Surface Self-Diffusion Induced Sintering of Nanoparticles

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xiaobo Chen, Can Li, Boyang Li, Yubin Ying, Shuonan Ye, Dmitri N. Zakharov, Sooyeon Hwang, Jiye Fang, Guofeng Wang, Yong-Jie Hu and Guangwen Zhou*, 
{"title":"Surface Self-Diffusion Induced Sintering of Nanoparticles","authors":"Xiaobo Chen,&nbsp;Can Li,&nbsp;Boyang Li,&nbsp;Yubin Ying,&nbsp;Shuonan Ye,&nbsp;Dmitri N. Zakharov,&nbsp;Sooyeon Hwang,&nbsp;Jiye Fang,&nbsp;Guofeng Wang,&nbsp;Yong-Jie Hu and Guangwen Zhou*,&nbsp;","doi":"10.1021/acsnano.4c0905610.1021/acsnano.4c09056","DOIUrl":null,"url":null,"abstract":"<p >Despite the critical role of sintering phenomena in constraining the long-term durability of nanosized particles, a clear understanding of nanoparticle sintering has remained elusive due to the challenges in atomically tracking the neck initiation and discerning different mechanisms. Through the integration of in situ transmission electron microscopy and atomistic modeling, this study uncovers the atomic dynamics governing the neck initiation of Pt–Fe nanoparticles via a surface self-diffusion process, allowing for coalescence without significant particle movement. Real-time imaging reveals that thermally activated surface morphology changes in individual nanoparticles induce significant surface self-diffusion. The kinetic entrapment of self-diffusing atoms in the gaps between closely spaced nanoparticles leads to the nucleation and growth of atomic layers for neck formation. This surface self-diffusion-driven sintering process is activated at a relatively lower temperature compared to the classic Ostwald ripening and particle migration and coalescence processes. The fundamental insights have practical implications for manipulating the morphology, size distribution, and stability of nanostructures by leveraging surface self-diffusion processes.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"18 45","pages":"31160–31173 31160–31173"},"PeriodicalIF":15.8000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.4c09056","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Despite the critical role of sintering phenomena in constraining the long-term durability of nanosized particles, a clear understanding of nanoparticle sintering has remained elusive due to the challenges in atomically tracking the neck initiation and discerning different mechanisms. Through the integration of in situ transmission electron microscopy and atomistic modeling, this study uncovers the atomic dynamics governing the neck initiation of Pt–Fe nanoparticles via a surface self-diffusion process, allowing for coalescence without significant particle movement. Real-time imaging reveals that thermally activated surface morphology changes in individual nanoparticles induce significant surface self-diffusion. The kinetic entrapment of self-diffusing atoms in the gaps between closely spaced nanoparticles leads to the nucleation and growth of atomic layers for neck formation. This surface self-diffusion-driven sintering process is activated at a relatively lower temperature compared to the classic Ostwald ripening and particle migration and coalescence processes. The fundamental insights have practical implications for manipulating the morphology, size distribution, and stability of nanostructures by leveraging surface self-diffusion processes.

Abstract Image

表面自扩散诱导纳米颗粒烧结
尽管烧结现象在制约纳米颗粒的长期耐久性方面起着至关重要的作用,但由于在原子上跟踪颈部起始和辨别不同机制方面存在挑战,因此对纳米颗粒烧结的清晰理解仍然难以实现。本研究通过整合原位透射电子显微镜和原子模型,揭示了通过表面自扩散过程控制铂-铁纳米颗粒颈部起始的原子动力学,从而在颗粒无明显移动的情况下实现凝聚。实时成像显示,单个纳米粒子在热激活下的表面形态变化诱发了显著的表面自扩散。自扩散原子在间距较近的纳米粒子之间的间隙中的动力学夹带导致了原子层的成核和生长,从而形成了颈部。与经典的奥斯特瓦尔德熟化和粒子迁移与凝聚过程相比,这种表面自扩散驱动的烧结过程是在相对较低的温度下激活的。这些基本见解对于利用表面自扩散过程操纵纳米结构的形态、尺寸分布和稳定性具有实际意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信