Waste Nitrogen Upcycling to Amino Acids during Anaerobic Fermentation on Biochar: An Active Strategy for Regulating Metabolic Reducing Power

IF 10.8 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Yanfei Tang, Eakalak Khan* and Daniel C. W. Tsang*, 
{"title":"Waste Nitrogen Upcycling to Amino Acids during Anaerobic Fermentation on Biochar: An Active Strategy for Regulating Metabolic Reducing Power","authors":"Yanfei Tang,&nbsp;Eakalak Khan* and Daniel C. W. Tsang*,&nbsp;","doi":"10.1021/acs.est.4c0889010.1021/acs.est.4c08890","DOIUrl":null,"url":null,"abstract":"<p >This study proposes a novel strategy that utilizes biochar (BC) during anaerobic fermentation (AF) to generate amino acids (AAs) toward nitrogen upcycling. The BC, pyrolyzed at 800 °C (BC800) to enhance graphite structures and electron-accepting sites, effectively addresses issues related to biosynthetic reducing power nicotinamide adenine dinucleotide phosphate insufficiency by altering cellular conditions and alleviates feedback inhibition through the immobilization of end products. This process establishes unique microbial signaling and energy networks, with <i>Escherichia coli</i> becoming dominant in the biofilm. The conversion rate of ammonia-N to AAs-N within the biofilm reached 67.4% in BC800-AF, which was significantly higher compared to the levels in other AF reactors with BC pyrolyzed at 600 and 400 °C (45.9 and 22.5%, respectively), as well as a control AF reactor (&lt;5%). Furthermore, in BC800-AF, the aromatic AAs (Aro-AAs) were as high as 70.8% of the AAs within the biofilm. The activities of key enzymes for Aro-AAs biosynthesis uniquely positively correlated with the electron-accepting capacity on BC800 (<i>R</i><sup>2</sup> ≥ 0.95). These findings hold promise for transforming existing AF reactors into factories that produce BC-based AAs, providing a more sustainable fertilizing agent than chemical fertilizers.</p>","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"58 45","pages":"20060–20072 20060–20072"},"PeriodicalIF":10.8000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.est.4c08890","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study proposes a novel strategy that utilizes biochar (BC) during anaerobic fermentation (AF) to generate amino acids (AAs) toward nitrogen upcycling. The BC, pyrolyzed at 800 °C (BC800) to enhance graphite structures and electron-accepting sites, effectively addresses issues related to biosynthetic reducing power nicotinamide adenine dinucleotide phosphate insufficiency by altering cellular conditions and alleviates feedback inhibition through the immobilization of end products. This process establishes unique microbial signaling and energy networks, with Escherichia coli becoming dominant in the biofilm. The conversion rate of ammonia-N to AAs-N within the biofilm reached 67.4% in BC800-AF, which was significantly higher compared to the levels in other AF reactors with BC pyrolyzed at 600 and 400 °C (45.9 and 22.5%, respectively), as well as a control AF reactor (<5%). Furthermore, in BC800-AF, the aromatic AAs (Aro-AAs) were as high as 70.8% of the AAs within the biofilm. The activities of key enzymes for Aro-AAs biosynthesis uniquely positively correlated with the electron-accepting capacity on BC800 (R2 ≥ 0.95). These findings hold promise for transforming existing AF reactors into factories that produce BC-based AAs, providing a more sustainable fertilizing agent than chemical fertilizers.

Abstract Image

生物炭厌氧发酵过程中的废氮转化为氨基酸:调节代谢还原力的主动策略
本研究提出了一种新策略,即在厌氧发酵(AF)过程中利用生物炭(BC)生成氨基酸(AAs),实现氮的上循环。生物炭在 800 °C(BC800)高温下热解以增强石墨结构和电子接受位点,通过改变细胞条件有效解决了与生物合成还原力烟酰胺腺嘌呤二核苷酸磷酸酯不足有关的问题,并通过固定最终产物缓解了反馈抑制。这一过程建立了独特的微生物信号和能量网络,大肠杆菌在生物膜中占据主导地位。在 BC800-AF 中,生物膜内氨-N 向 AAs-N 的转化率达到 67.4%,与其他在 600 和 400 °C 下热解 BC 的 AF 反应器(分别为 45.9% 和 22.5%)以及对照 AF 反应器(<5%)相比,这一转化率明显更高。此外,在 BC800-AF 中,芳香族 AAs(Aro-AAs)占生物膜内 AAs 的比例高达 70.8%。Aro-AAs 生物合成关键酶的活性与 BC800 上的电子接受能力呈独特的正相关(R2 ≥ 0.95)。这些发现有望将现有的 AF 反应器改造成生产基于 BC 的 AA 的工厂,提供比化肥更可持续的肥料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信