Jianwei Zhang, Jinyu Lei, Pu Feng, Wenduo Chen, Jiajia Zhou* and Guangzhao Zhang*,
{"title":"Formation and Dynamics of Imidazole Supramolecular Chains Investigated by Deep Potential Molecular Dynamics Simulation","authors":"Jianwei Zhang, Jinyu Lei, Pu Feng, Wenduo Chen, Jiajia Zhou* and Guangzhao Zhang*, ","doi":"10.1021/acs.langmuir.4c0288810.1021/acs.langmuir.4c02888","DOIUrl":null,"url":null,"abstract":"<p >Imidazole-based materials have attracted considerable attention due to their promising potential for facilitating anhydrous proton transport at high temperatures. Herein, a machine learning-based deep potential (DP) model for bulk imidazole with first-principles accuracy is developed. The trained model exhibits remarkable accuracy in predicting energies and forces, with minor errors of 4.71 × 10<sup>–4</sup> eV/atom and 3.23 × 10<sup>–2</sup> eV/Å, respectively. Utilizing DP molecular dynamics simulations, we have systematically investigated the temperature-dependent formation and dynamics of imidazole supramolecular chains through the partial radial distribution function, quantification of hydrogen bond numbers, incoherent intermediate scattering function, and diffusion coefficient. The findings reveal the influence of temperature on the proton transport path following either the “Grotthuss” and “vehicle” mechanism.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"40 45","pages":"23864–23871 23864–23871"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.langmuir.4c02888","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Imidazole-based materials have attracted considerable attention due to their promising potential for facilitating anhydrous proton transport at high temperatures. Herein, a machine learning-based deep potential (DP) model for bulk imidazole with first-principles accuracy is developed. The trained model exhibits remarkable accuracy in predicting energies and forces, with minor errors of 4.71 × 10–4 eV/atom and 3.23 × 10–2 eV/Å, respectively. Utilizing DP molecular dynamics simulations, we have systematically investigated the temperature-dependent formation and dynamics of imidazole supramolecular chains through the partial radial distribution function, quantification of hydrogen bond numbers, incoherent intermediate scattering function, and diffusion coefficient. The findings reveal the influence of temperature on the proton transport path following either the “Grotthuss” and “vehicle” mechanism.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).