{"title":"Experimental Study and Modeling Development on Blade Parameters of an Axial Swirling Spray Tray","authors":"Hengrui Zhang, Dequn Fan, Xin Dai and Dapeng Hu*, ","doi":"10.1021/acs.iecr.4c0266410.1021/acs.iecr.4c02664","DOIUrl":null,"url":null,"abstract":"<p >The Axial Swirling Spray Tray (ASST) is introduced to minimize mist entrainment. Through experiments, we studied the pressure drop and liquid circulation volume in the cyclone tube caused by different blade installation positions and structural parameters. The findings indicate that the hydrodynamic performances are unaffected by the installation position. Decreasing the blade number, arc segment wrap angle, and hub-shroud radius ratio leads to a gradual reduction in dry pressure drop but an increase in mist entrainment and liquid circulation volume. Conversely, a larger outlet angle correlates with increased liquid circulation volume, decreased dry pressure drop, and gradual mist entrainment. Notably, when the overlap ratio exceeds 0, the impact of straight line segment wrap angle on hydrodynamic performances is negligible. Furthermore, the mathematical models are developed to predict the pressure drop and liquid circulation volume within the operational range. The models demonstrate the fitting errors within ±15% when compared to experimental data.</p>","PeriodicalId":39,"journal":{"name":"Industrial & Engineering Chemistry Research","volume":"63 45","pages":"19848–19862 19848–19862"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial & Engineering Chemistry Research","FirstCategoryId":"5","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.iecr.4c02664","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The Axial Swirling Spray Tray (ASST) is introduced to minimize mist entrainment. Through experiments, we studied the pressure drop and liquid circulation volume in the cyclone tube caused by different blade installation positions and structural parameters. The findings indicate that the hydrodynamic performances are unaffected by the installation position. Decreasing the blade number, arc segment wrap angle, and hub-shroud radius ratio leads to a gradual reduction in dry pressure drop but an increase in mist entrainment and liquid circulation volume. Conversely, a larger outlet angle correlates with increased liquid circulation volume, decreased dry pressure drop, and gradual mist entrainment. Notably, when the overlap ratio exceeds 0, the impact of straight line segment wrap angle on hydrodynamic performances is negligible. Furthermore, the mathematical models are developed to predict the pressure drop and liquid circulation volume within the operational range. The models demonstrate the fitting errors within ±15% when compared to experimental data.
期刊介绍:
ndustrial & Engineering Chemistry, with variations in title and format, has been published since 1909 by the American Chemical Society. Industrial & Engineering Chemistry Research is a weekly publication that reports industrial and academic research in the broad fields of applied chemistry and chemical engineering with special focus on fundamentals, processes, and products.