{"title":"Removal of Germanium from a Solution by a Magnetic Iron-Based Precipitant","authors":"Jie Dai, Ming Liang, Kun Yang* and Libo Zhang*, ","doi":"10.1021/acs.langmuir.4c0317410.1021/acs.langmuir.4c03174","DOIUrl":null,"url":null,"abstract":"<p >This study presents a method for the precipitation of germanium from a solution using magnetic iron-based precipitants and contrasts this method with the commonly employed neutralization–precipitation technique in industrial production, analyzing and comparing their reaction conditions and the properties of their precipitates. This study analyzes the influence of varying experimental conditions (reaction time, reaction temperature, iron:germanium molar ratio, Fe<sup>3+</sup>:Fe<sup>2+</sup> molar ratio, and reaction pH) on the germanium precipitation efficiency. With a precipitation time of 30 min, a precipitation temperature of 30 °C, an iron:germanium molar ratio of 30:1, an Fe<sup>3+</sup>:Fe<sup>2+</sup> molar ratio of 3:1, and a reaction pH of 5.0, the optimal germanium precipitation efficiency achieved was 99.5%. Furthermore, this study employed X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, and vibrating sample magnetometry to analyze the properties and composition of the precipitate, providing support for the conclusion regarding germanium precipitation using magnetic iron-based precipitants. Through theoretical analysis and instrumental testing, it was determined that the precipitation of germanium from a solution using magnetic iron-based precipitants significantly reduces the reaction time compared to those of neutralization–precipitation methods. Moreover, a magnetic iron-based precipitant substantially reduces the amount of precipitate, allows for magnetic separation of the precipitate, and effectively alleviates the problem of the presence of other valuable metals in the precipitate.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"40 45","pages":"23973–23985 23973–23985"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.langmuir.4c03174","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents a method for the precipitation of germanium from a solution using magnetic iron-based precipitants and contrasts this method with the commonly employed neutralization–precipitation technique in industrial production, analyzing and comparing their reaction conditions and the properties of their precipitates. This study analyzes the influence of varying experimental conditions (reaction time, reaction temperature, iron:germanium molar ratio, Fe3+:Fe2+ molar ratio, and reaction pH) on the germanium precipitation efficiency. With a precipitation time of 30 min, a precipitation temperature of 30 °C, an iron:germanium molar ratio of 30:1, an Fe3+:Fe2+ molar ratio of 3:1, and a reaction pH of 5.0, the optimal germanium precipitation efficiency achieved was 99.5%. Furthermore, this study employed X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, and vibrating sample magnetometry to analyze the properties and composition of the precipitate, providing support for the conclusion regarding germanium precipitation using magnetic iron-based precipitants. Through theoretical analysis and instrumental testing, it was determined that the precipitation of germanium from a solution using magnetic iron-based precipitants significantly reduces the reaction time compared to those of neutralization–precipitation methods. Moreover, a magnetic iron-based precipitant substantially reduces the amount of precipitate, allows for magnetic separation of the precipitate, and effectively alleviates the problem of the presence of other valuable metals in the precipitate.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).