{"title":"C3N4 Template-Based N-Doped Porous Carbon Cathode for Zinc-Ion Hybrid Capacitors","authors":"Zhen Cao, Weijie Zhang*, Yuying Li, Junnan Qu, Jingxuan Ren, Yinghua Zhang, Jinhao Chen, Jiahao Lei, Jingyao Li and Xinli Guo*, ","doi":"10.1021/acsanm.4c0467710.1021/acsanm.4c04677","DOIUrl":null,"url":null,"abstract":"<p >Zinc-ion hybrid capacitors (ZIHCs), which combine the advantages of batteries and supercapacitors, are very competitive in the field of advanced energy storage applications. However, their performance is limited by carbon cathodes that have a low specific surface area and inferior porous structure. Here, we report a N-doped porous carbon cathode prepared by high-temperature calcination and chemical activation based on a soft C<sub>3</sub>N<sub>4</sub> template. The as-prepared N-doped porous carbon cathode shows a hierarchical nano structure with micropores and mesopores, which can provide additional active sites for zinc-ion adsorption, reduce charge-transfer resistance, and enhance kinetic performance. The ZIHCs assembled by using this N-doped porous carbon cathode exhibits a specific capacitance of 166 mAh g<sup>–1</sup> at a current density of 0.1 A g<sup>–1</sup>, an energy density of up to 124 Wh kg<sup>–1</sup>, and an 82.4% capacitance retention after 5000 cycles at a current density of 5 A g<sup>–1</sup>, showing a great potential for practical applications. Our work provides a way for developing high-performance zinc-ion hybrid capacitors.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.4c04677","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Zinc-ion hybrid capacitors (ZIHCs), which combine the advantages of batteries and supercapacitors, are very competitive in the field of advanced energy storage applications. However, their performance is limited by carbon cathodes that have a low specific surface area and inferior porous structure. Here, we report a N-doped porous carbon cathode prepared by high-temperature calcination and chemical activation based on a soft C3N4 template. The as-prepared N-doped porous carbon cathode shows a hierarchical nano structure with micropores and mesopores, which can provide additional active sites for zinc-ion adsorption, reduce charge-transfer resistance, and enhance kinetic performance. The ZIHCs assembled by using this N-doped porous carbon cathode exhibits a specific capacitance of 166 mAh g–1 at a current density of 0.1 A g–1, an energy density of up to 124 Wh kg–1, and an 82.4% capacitance retention after 5000 cycles at a current density of 5 A g–1, showing a great potential for practical applications. Our work provides a way for developing high-performance zinc-ion hybrid capacitors.
期刊介绍:
ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.