Tailoring of Nanomesh Arrays with Venus Flytrap-Like NiCoP/NiCo-LDH for Supercapacitors

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Lei Zhu, Yuxiang Wang, Yue Wei, Yiyu Zhu, Zijun Zuo, Yuebin Cao, Wonchun Oh*, Lele Fan* and Qinfang Zhang*, 
{"title":"Tailoring of Nanomesh Arrays with Venus Flytrap-Like NiCoP/NiCo-LDH for Supercapacitors","authors":"Lei Zhu,&nbsp;Yuxiang Wang,&nbsp;Yue Wei,&nbsp;Yiyu Zhu,&nbsp;Zijun Zuo,&nbsp;Yuebin Cao,&nbsp;Wonchun Oh*,&nbsp;Lele Fan* and Qinfang Zhang*,&nbsp;","doi":"10.1021/acsanm.4c0472910.1021/acsanm.4c04729","DOIUrl":null,"url":null,"abstract":"<p >The superior electrochemical functionality of supercapacitor electrodes is heavily reliant on the strategic design of nanostructures that effectively integrate diverse active materials. In this study, a facile hydrothermal method was investigated for easy synthesis of Venus flytrap-like NiCoP using nickel foam (NF) as both the substrate and the nickel source. Furthermore, the electrochemical deposition of NiCo-LDH onto the 3D NiCoP nanomeshes was delved into, creating a hybrid nanomaterial with enhanced energy storage capability of 1675 F/g (1 A/g). This innovative combination of conductive NiCoP as a core and redox-active NiCo-LDH as a shell forms a smart heteronetwork that boosts surface area, enhances the presence of the redox-active sites, and improves ion/electron transport for faradaic reactions. The NiCoP/NiCo-2//PC supercapacitor boasts a remarkable energy density of 30.96 Wh/kg and a power density of 783.90 W/kg and displays favorable capacitance retention rate characteristics (73.5%, from 600 to 10,000 cycles). This effective and simple technique for transforming a high-performance anode on a nickel foam substrate could significantly improve their applicability for large-scale use as well as provide useful knowledge for creating self-supporting substrates for energy storage and conversion through other manufacturing processes.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.4c04729","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The superior electrochemical functionality of supercapacitor electrodes is heavily reliant on the strategic design of nanostructures that effectively integrate diverse active materials. In this study, a facile hydrothermal method was investigated for easy synthesis of Venus flytrap-like NiCoP using nickel foam (NF) as both the substrate and the nickel source. Furthermore, the electrochemical deposition of NiCo-LDH onto the 3D NiCoP nanomeshes was delved into, creating a hybrid nanomaterial with enhanced energy storage capability of 1675 F/g (1 A/g). This innovative combination of conductive NiCoP as a core and redox-active NiCo-LDH as a shell forms a smart heteronetwork that boosts surface area, enhances the presence of the redox-active sites, and improves ion/electron transport for faradaic reactions. The NiCoP/NiCo-2//PC supercapacitor boasts a remarkable energy density of 30.96 Wh/kg and a power density of 783.90 W/kg and displays favorable capacitance retention rate characteristics (73.5%, from 600 to 10,000 cycles). This effective and simple technique for transforming a high-performance anode on a nickel foam substrate could significantly improve their applicability for large-scale use as well as provide useful knowledge for creating self-supporting substrates for energy storage and conversion through other manufacturing processes.

Abstract Image

用金星捕蝇草状 NiCoP/NiCo-LDH 为超级电容器定制纳米网格阵列
超级电容器电极卓越的电化学功能在很大程度上取决于能有效集成各种活性材料的纳米结构的战略设计。本研究以泡沫镍(NF)为基底和镍源,研究了一种简便的水热法,以轻松合成金星捕蝇草状 NiCoP。此外,还深入研究了镍钴-LDH 在三维镍钴磷纳米片上的电化学沉积,从而创造出一种具有 1675 F/g (1 A/g) 强储能能力的混合纳米材料。这种以导电镍钴磷为核,氧化还原活性镍钴-LDH 为壳的创新组合形成了一种智能异质网络,可提高表面积,增强氧化还原活性位点的存在,并改善离子/电子的传输,从而促进法拉第反应。镍钴磷/镍钴-2//PC 超级电容器的能量密度高达 30.96 Wh/kg,功率密度为 783.90 W/kg,并显示出良好的电容保持率特性(从 600 到 10,000 次循环,保持率为 73.5%)。这种在泡沫镍基底上转化高性能阳极的有效而简单的技术可显著提高其大规模应用的适用性,并为通过其他制造工艺创造用于能量存储和转换的自支撑基底提供有用的知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信