Lauren E. Clarke, Katelyn M. Ripley and Fikile R. Brushett*,
{"title":"Insights into Energetic Penalties in Electrochemical CO2 Separation Systems","authors":"Lauren E. Clarke, Katelyn M. Ripley and Fikile R. Brushett*, ","doi":"10.1021/acs.iecr.4c0176310.1021/acs.iecr.4c01763","DOIUrl":null,"url":null,"abstract":"<p >While innovative electrochemical approaches continue to emerge for carbon capture, open questions remain regarding the performance characteristics of these nascent concepts. A wide range of energy requirements have been reported; the different sources of performance loss and their relative magnitudes are not yet fully understood, challenging both quantitative comparisons between devices and identification of performance improvement pathways. Herein, we develop a mathematical framework to evaluate the energetics of four-stage electrochemical separation systems in which soluble capture chemistries are activated and deactivated in an electrochemical reactor, and the liquid capture medium absorbs and desorbs carbon dioxide (CO<sub>2</sub>) in separate units. Specifically, we construct a dimensionless electrochemical reactor model, derive key groups associated with thermodynamics, kinetics, ohmic resistance, and mass transport, and, subsequently, evaluate their impact on energetic penalties. We also discuss the use of this model for exploring different performance improvement pathways. Ultimately, this work seeks to facilitate understanding of the interplay between material properties, operating conditions, and energy requirements.</p>","PeriodicalId":39,"journal":{"name":"Industrial & Engineering Chemistry Research","volume":"63 45","pages":"19707–19727 19707–19727"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial & Engineering Chemistry Research","FirstCategoryId":"5","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.iecr.4c01763","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
While innovative electrochemical approaches continue to emerge for carbon capture, open questions remain regarding the performance characteristics of these nascent concepts. A wide range of energy requirements have been reported; the different sources of performance loss and their relative magnitudes are not yet fully understood, challenging both quantitative comparisons between devices and identification of performance improvement pathways. Herein, we develop a mathematical framework to evaluate the energetics of four-stage electrochemical separation systems in which soluble capture chemistries are activated and deactivated in an electrochemical reactor, and the liquid capture medium absorbs and desorbs carbon dioxide (CO2) in separate units. Specifically, we construct a dimensionless electrochemical reactor model, derive key groups associated with thermodynamics, kinetics, ohmic resistance, and mass transport, and, subsequently, evaluate their impact on energetic penalties. We also discuss the use of this model for exploring different performance improvement pathways. Ultimately, this work seeks to facilitate understanding of the interplay between material properties, operating conditions, and energy requirements.
期刊介绍:
ndustrial & Engineering Chemistry, with variations in title and format, has been published since 1909 by the American Chemical Society. Industrial & Engineering Chemistry Research is a weekly publication that reports industrial and academic research in the broad fields of applied chemistry and chemical engineering with special focus on fundamentals, processes, and products.