Xin Huang, Héctor González-Herrero, Orlando J. Silveira, Shawulienu Kezilebieke, Peter Liljeroth and Jani Sainio*,
{"title":"Atomically Sharp 1D Interfaces in 2D Lateral Heterostructures of VSe2─NbSe2 Monolayers","authors":"Xin Huang, Héctor González-Herrero, Orlando J. Silveira, Shawulienu Kezilebieke, Peter Liljeroth and Jani Sainio*, ","doi":"10.1021/acsnano.4c1030210.1021/acsnano.4c10302","DOIUrl":null,"url":null,"abstract":"<p >van der Waals heterostructures have emerged as an ideal platform for creating engineered artificial electronic states. While vertical heterostructures have been extensively studied, realizing high-quality lateral heterostructures with atomically sharp interfaces remains a major experimental challenge. Here, we advance a one-pot two-step molecular beam lateral epitaxy approach and successfully synthesize atomically well-defined 1T-VSe<sub>2</sub>─1H-NbSe<sub>2</sub> lateral heterostructures. We demonstrate the formation of defect-free lateral heterostructures and characterize their electronic structure by using scanning tunneling microscopy and spectroscopy together with density functional theory calculations. We find additional electronic states at the 1D interface as well as signatures of Kondo resonances in a side-coupled geometry. Our experiments explored the full potential of lateral heterostructures for realizing exotic electronic states in low-dimensional systems for further studies of artificial designer quantum materials.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"18 45","pages":"31300–31308 31300–31308"},"PeriodicalIF":15.8000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnano.4c10302","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.4c10302","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
van der Waals heterostructures have emerged as an ideal platform for creating engineered artificial electronic states. While vertical heterostructures have been extensively studied, realizing high-quality lateral heterostructures with atomically sharp interfaces remains a major experimental challenge. Here, we advance a one-pot two-step molecular beam lateral epitaxy approach and successfully synthesize atomically well-defined 1T-VSe2─1H-NbSe2 lateral heterostructures. We demonstrate the formation of defect-free lateral heterostructures and characterize their electronic structure by using scanning tunneling microscopy and spectroscopy together with density functional theory calculations. We find additional electronic states at the 1D interface as well as signatures of Kondo resonances in a side-coupled geometry. Our experiments explored the full potential of lateral heterostructures for realizing exotic electronic states in low-dimensional systems for further studies of artificial designer quantum materials.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.