Assessing the need for coronary angiography in high-risk non-ST-elevation acute coronary syndrome patients using artificial intelligence and computed tomography.

Aurelien Cagnina, Adil Salihu, David Meier, Wongsakorn Luangphiphat, Benjamin Faltin, Ioannis Skalidis, Aurelia Zimmerli, David Rotzinger, Salah Dine Qanadli, Olivier Muller, Emmanuel Abbe, Stephane Fournier
{"title":"Assessing the need for coronary angiography in high-risk non-ST-elevation acute coronary syndrome patients using artificial intelligence and computed tomography.","authors":"Aurelien Cagnina, Adil Salihu, David Meier, Wongsakorn Luangphiphat, Benjamin Faltin, Ioannis Skalidis, Aurelia Zimmerli, David Rotzinger, Salah Dine Qanadli, Olivier Muller, Emmanuel Abbe, Stephane Fournier","doi":"10.1007/s10554-024-03283-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study aimed to evaluate the efficacy of the Chat Generative Pre-trained Transformer (ChatGPT) in guiding the need for invasive coronary angiography (ICA) in high-risk non-ST-elevation (NSTE) acute coronary syndrome (ACS) patients based on both standard clinical data and coronary computed tomography angiography (CCTA) findings.</p><p><strong>Methods: </strong>This investigation is a sub-study of a larger prospective multicentric double blinded project where high-risk NSTE-ACS patients underwent CCTA prior to ICA to compare coronary lesion by both modalities. ChatGPT analyzed clinical vignettes containing patient data, electrocardiograms, troponin levels, and CCTA results to determine the necessity of ICA. The AI's recommendations were then compared to actual ICA findings to assess its decision-making accuracy.</p><p><strong>Results: </strong>In total, 86 patients (age: 62 ± 13 years old, female 27%) were included. ChatGPT recommended against ICA for 19 patients, 16 of whom indeed had no significant findings. For 67 patients, ChatGPT advised proceeding with ICA, and a significant lesion was confirmed in 58 of them. Consequently, ChatGPT's overall accuracy stood at 86%, with a sensitivity of 95% (95% confidence interval (CI) 0.76-0.92) and a specificity of 64% (95% CI 0.62-0.94). The model's negative predictive value was 84% (95% CI 0.44-0.79), and its positive predictive value was 87% 95% CI 0.86-0.97).</p><p><strong>Conclusion: </strong>Preliminary evidence suggests that ChatGPT can effectively assist in making ICA decisions for high-risk NSTE-ACS patients, potentially reducing unnecessary procedures. However, the study underscores the importance of data accuracy and calls for larger, more diverse investigations to refine artificial intelligence's role in clinical decision-making.</p>","PeriodicalId":94227,"journal":{"name":"The international journal of cardiovascular imaging","volume":" ","pages":"55-61"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11742328/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The international journal of cardiovascular imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10554-024-03283-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/8 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: This study aimed to evaluate the efficacy of the Chat Generative Pre-trained Transformer (ChatGPT) in guiding the need for invasive coronary angiography (ICA) in high-risk non-ST-elevation (NSTE) acute coronary syndrome (ACS) patients based on both standard clinical data and coronary computed tomography angiography (CCTA) findings.

Methods: This investigation is a sub-study of a larger prospective multicentric double blinded project where high-risk NSTE-ACS patients underwent CCTA prior to ICA to compare coronary lesion by both modalities. ChatGPT analyzed clinical vignettes containing patient data, electrocardiograms, troponin levels, and CCTA results to determine the necessity of ICA. The AI's recommendations were then compared to actual ICA findings to assess its decision-making accuracy.

Results: In total, 86 patients (age: 62 ± 13 years old, female 27%) were included. ChatGPT recommended against ICA for 19 patients, 16 of whom indeed had no significant findings. For 67 patients, ChatGPT advised proceeding with ICA, and a significant lesion was confirmed in 58 of them. Consequently, ChatGPT's overall accuracy stood at 86%, with a sensitivity of 95% (95% confidence interval (CI) 0.76-0.92) and a specificity of 64% (95% CI 0.62-0.94). The model's negative predictive value was 84% (95% CI 0.44-0.79), and its positive predictive value was 87% 95% CI 0.86-0.97).

Conclusion: Preliminary evidence suggests that ChatGPT can effectively assist in making ICA decisions for high-risk NSTE-ACS patients, potentially reducing unnecessary procedures. However, the study underscores the importance of data accuracy and calls for larger, more diverse investigations to refine artificial intelligence's role in clinical decision-making.

利用人工智能和计算机断层扫描评估高风险非 ST 段抬高急性冠状动脉综合征患者进行冠状动脉造影术的必要性。
目的:本研究旨在根据标准临床数据和冠状动脉计算机断层扫描(CCTA)结果,评估聊天生成预训练转换器(ChatGPT)在指导高危非ST段抬高(NSTE)急性冠状动脉综合征(ACS)患者是否需要进行有创冠状动脉造影(ICA)方面的功效:本研究是一项大型前瞻性多中心双盲项目的子研究,在该项目中,高危 NSTE-ACS 患者在接受 ICA 之前接受了 CCTA 检查,以比较两种检查方式的冠状动脉病变情况。ChatGPT 分析了包含患者数据、心电图、肌钙蛋白水平和 CCTA 结果的临床案例,以确定是否有必要进行 ICA。然后将人工智能的建议与实际的 ICA 结果进行比较,以评估其决策的准确性:共纳入 86 名患者(年龄:62 ± 13 岁,女性占 27%)。ChatGPT 建议不对 19 名患者进行 ICA 检查,其中 16 人确实没有明显的检查结果。对于 67 名患者,ChatGPT 建议继续进行 ICA,其中 58 人证实有明显病变。因此,ChatGPT 的总体准确率为 86%,灵敏度为 95%(95% 置信区间 (CI):0.76-0.92),特异度为 64%(95% 置信区间 (CI):0.62-0.94)。该模型的阴性预测值为84%(95% CI 0.44-0.79),阳性预测值为87%(95% CI 0.86-0.97):初步证据表明,ChatGPT 可有效协助高危 NSTE-ACS 患者做出 ICA 决定,从而减少不必要的手术。不过,该研究强调了数据准确性的重要性,并呼吁开展更大规模、更多样化的研究,以完善人工智能在临床决策中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信