Noah M Scigliano, Jessica E Goetz, Ignacio Garcia Fleury, Kevin N Dibbern, Krit Petrachaianan, Joseph A Buckwalter V
{"title":"The effect of full-body weight-bearing on palmar pressure distribution in collegiate-level gymnasts.","authors":"Noah M Scigliano, Jessica E Goetz, Ignacio Garcia Fleury, Kevin N Dibbern, Krit Petrachaianan, Joseph A Buckwalter V","doi":"10.1080/14763141.2024.2424389","DOIUrl":null,"url":null,"abstract":"<p><p>Wrist and hand biomechanics under full-body load are not fully understood. To identify potential anatomy-related differences in hand loading, 15 former collegiate athletes completed a 45-second handstand on a novel emed® pressure platform system. Center of pressure (CoP) and force distribution across the palmar surface were analysed during the stabilised phase. Maximum force, mean pressure, and contact area were calculated in four palmar anatomic subregions: hypothenar, thenar, metacarpals, and fingers. These values were related to ulnar variance measurements obtained from a participant handstand hold in a weight-bearing computed tomography machine. About 93% of participants shifted their CoP towards their dominant hand (<i>p</i> < 0.001), and among all participants, the dominant hand applied an average of 8.91% (<i>p</i> = 0.002) higher maximum force than the nondominant hand. The proportion of total mean force was highest in the hypothenar (47.1%) and thenar regions (36.5%). Every 1.00 mm increase in ulnar variance corresponded to a 2.8% increase in maximum force in the hypothenar region (<i>p</i> = 0.037). This investigation emphasises the role of gymnastics hand dominance on left/right hand weight distribution and the importance of the hypothenar zone in distributing pressure during handstands. It also indicates that force transmission through the wrist to the palm is contingent on radioulnar positioning.</p>","PeriodicalId":49482,"journal":{"name":"Sports Biomechanics","volume":" ","pages":"1-11"},"PeriodicalIF":2.0000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sports Biomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/14763141.2024.2424389","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Wrist and hand biomechanics under full-body load are not fully understood. To identify potential anatomy-related differences in hand loading, 15 former collegiate athletes completed a 45-second handstand on a novel emed® pressure platform system. Center of pressure (CoP) and force distribution across the palmar surface were analysed during the stabilised phase. Maximum force, mean pressure, and contact area were calculated in four palmar anatomic subregions: hypothenar, thenar, metacarpals, and fingers. These values were related to ulnar variance measurements obtained from a participant handstand hold in a weight-bearing computed tomography machine. About 93% of participants shifted their CoP towards their dominant hand (p < 0.001), and among all participants, the dominant hand applied an average of 8.91% (p = 0.002) higher maximum force than the nondominant hand. The proportion of total mean force was highest in the hypothenar (47.1%) and thenar regions (36.5%). Every 1.00 mm increase in ulnar variance corresponded to a 2.8% increase in maximum force in the hypothenar region (p = 0.037). This investigation emphasises the role of gymnastics hand dominance on left/right hand weight distribution and the importance of the hypothenar zone in distributing pressure during handstands. It also indicates that force transmission through the wrist to the palm is contingent on radioulnar positioning.
期刊介绍:
Sports Biomechanics is the Thomson Reuters listed scientific journal of the International Society of Biomechanics in Sports (ISBS). The journal sets out to generate knowledge to improve human performance and reduce the incidence of injury, and to communicate this knowledge to scientists, coaches, clinicians, teachers, and participants. The target performance realms include not only the conventional areas of sports and exercise, but also fundamental motor skills and other highly specialized human movements such as dance (both sport and artistic).
Sports Biomechanics is unique in its emphasis on a broad biomechanical spectrum of human performance including, but not limited to, technique, skill acquisition, training, strength and conditioning, exercise, coaching, teaching, equipment, modeling and simulation, measurement, and injury prevention and rehabilitation. As well as maintaining scientific rigour, there is a strong editorial emphasis on ''reader friendliness''. By emphasising the practical implications and applications of research, the journal seeks to benefit practitioners directly.
Sports Biomechanics publishes papers in four sections: Original Research, Reviews, Teaching, and Methods and Theoretical Perspectives.