FGL2172-220 peptides improve the antitumor effect of HCMV-IE1mut vaccine against glioblastoma by modulating immunosuppressive cells in the tumor microenvironment.
IF 5.3 2区 材料科学Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
{"title":"FGL2<sub>172-220</sub> peptides improve the antitumor effect of HCMV-IE1mut vaccine against glioblastoma by modulating immunosuppressive cells in the tumor microenvironment.","authors":"Shan Wang, Shasha Jiang, Xu Li, Huan Huang, Xu Qiu, Meng Yu, Xiaoli Yang, Fengjun Liu, Chen Wang, Wen Shen, Yunyang Wang, Bin Wang","doi":"10.1080/2162402X.2024.2423983","DOIUrl":null,"url":null,"abstract":"<p><p>Glioblastoma multiforme (GBM) is a highly aggressive primary brain tumor characterized by poor prognosis and lack of effective treatments. In recent years, peptide vaccines that use sequences based on tumor-specific or tumor-associated antigens to activate immune responses against tumor cells have emerged as a new therapeutic strategy. In this study, we developed a novel therapeutic polypeptide vaccine targeting the tumor-associated antigen Fibrinogen-Like Protein 2 (FGL2), whose dominant epitope peptide was tandemly linked to the C-terminus of HCMV-IE1mut via a linker. We used this vaccine to compare the therapeutic efficacy of HCMV-IE1mut alone versus HCMV-IE1mut-FGL2<sub>172-220</sub> and investigate the potential mechanism of action of HCMV-IE1mut-FGL2<sub>172-220</sub> in glioma treatment. An in situ GBM model (GL261-IE1-luc cells) was used to determine the efficacy of the vaccine. Treatment with HCMV-IE1mut-FGL2<sub>172-220</sub> exerted antitumor effects and extended the survival of the GL261 animal model. We observed reduced proportions of microglia, regulatory T cells (Treg), and myeloid-derived suppressor cells (MDSC) in the tumor microenvironment (TME) by immunofluorescence. Flow cytometry showed that compared to HCMV-IE1mut alone, treatment with HCMV-IE1mut-FGL2<sub>172-220</sub> increased the proportion of CD8+ T cells and tissue-resident memory T cells (TRM). ELISA analysis showed that it improved the secretion of tumor-specific IFN-γ and TNF-α by these cells and downregulated the expression of IL-6 and IL-10. Our study demonstrates that the long-peptide FGL2<sub>172-220</sub> improves the antitumor efficacy of HCMV-IE1mut, possibly by reshaping immune cells in the glioma microenvironment. These findings lay the groundwork for the development of therapeutic antigenic peptide vaccines to improve antitumor effects for cancer.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11542393/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/2162402X.2024.2423983","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive primary brain tumor characterized by poor prognosis and lack of effective treatments. In recent years, peptide vaccines that use sequences based on tumor-specific or tumor-associated antigens to activate immune responses against tumor cells have emerged as a new therapeutic strategy. In this study, we developed a novel therapeutic polypeptide vaccine targeting the tumor-associated antigen Fibrinogen-Like Protein 2 (FGL2), whose dominant epitope peptide was tandemly linked to the C-terminus of HCMV-IE1mut via a linker. We used this vaccine to compare the therapeutic efficacy of HCMV-IE1mut alone versus HCMV-IE1mut-FGL2172-220 and investigate the potential mechanism of action of HCMV-IE1mut-FGL2172-220 in glioma treatment. An in situ GBM model (GL261-IE1-luc cells) was used to determine the efficacy of the vaccine. Treatment with HCMV-IE1mut-FGL2172-220 exerted antitumor effects and extended the survival of the GL261 animal model. We observed reduced proportions of microglia, regulatory T cells (Treg), and myeloid-derived suppressor cells (MDSC) in the tumor microenvironment (TME) by immunofluorescence. Flow cytometry showed that compared to HCMV-IE1mut alone, treatment with HCMV-IE1mut-FGL2172-220 increased the proportion of CD8+ T cells and tissue-resident memory T cells (TRM). ELISA analysis showed that it improved the secretion of tumor-specific IFN-γ and TNF-α by these cells and downregulated the expression of IL-6 and IL-10. Our study demonstrates that the long-peptide FGL2172-220 improves the antitumor efficacy of HCMV-IE1mut, possibly by reshaping immune cells in the glioma microenvironment. These findings lay the groundwork for the development of therapeutic antigenic peptide vaccines to improve antitumor effects for cancer.
期刊介绍:
ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.