{"title":"Network transformation-based analysis of biochemical systems.","authors":"Dylan Antonio Talabis, Eduardo Mendoza","doi":"10.1007/s00285-024-02152-2","DOIUrl":null,"url":null,"abstract":"<p><p>A dynamical system obtains a wide variety of kinetic realizations, which is advantageous for the analysis of biochemical systems. A reaction network, derived from a dynamical system, may or may not possess some properties needed for a thorough analysis. We improve and extend the work of Johnston and Hong et al. on network translations to network transformations, where the network is modified while preserving the dynamical system. These transformations can shrink, extend, or retain the stoichiometric subspace. Here, we show that a positive dependent network can be translated to a weakly reversible network. Using the kinetic realizations of (1) calcium signaling in the olfactory system and (2) metabolic insulin signaling, we demonstrate the benefits of transformed systems with positive deficiency for analyzing biochemical systems. Furthermore, we present an algorithm for a network transformation of a weakly reversible non-complex factorizable kinetic (NFK) system to a weakly reversible complex factorizable kinetic (CFK) system, thereby enhancing the Subspace Coincidence Theorem for NFK systems of Nazareno et al. Finally, using the transformed kinetic realization of monolignol biosynthesis in Populus xylem, we study the structural and kinetic properties of transformed systems, including the invariance of concordance and variation of injectivity and mono-/multi-stationarity under network transformation.</p>","PeriodicalId":50148,"journal":{"name":"Journal of Mathematical Biology","volume":"89 6","pages":"62"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00285-024-02152-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
A dynamical system obtains a wide variety of kinetic realizations, which is advantageous for the analysis of biochemical systems. A reaction network, derived from a dynamical system, may or may not possess some properties needed for a thorough analysis. We improve and extend the work of Johnston and Hong et al. on network translations to network transformations, where the network is modified while preserving the dynamical system. These transformations can shrink, extend, or retain the stoichiometric subspace. Here, we show that a positive dependent network can be translated to a weakly reversible network. Using the kinetic realizations of (1) calcium signaling in the olfactory system and (2) metabolic insulin signaling, we demonstrate the benefits of transformed systems with positive deficiency for analyzing biochemical systems. Furthermore, we present an algorithm for a network transformation of a weakly reversible non-complex factorizable kinetic (NFK) system to a weakly reversible complex factorizable kinetic (CFK) system, thereby enhancing the Subspace Coincidence Theorem for NFK systems of Nazareno et al. Finally, using the transformed kinetic realization of monolignol biosynthesis in Populus xylem, we study the structural and kinetic properties of transformed systems, including the invariance of concordance and variation of injectivity and mono-/multi-stationarity under network transformation.
期刊介绍:
The Journal of Mathematical Biology focuses on mathematical biology - work that uses mathematical approaches to gain biological understanding or explain biological phenomena.
Areas of biology covered include, but are not restricted to, cell biology, physiology, development, neurobiology, genetics and population genetics, population biology, ecology, behavioural biology, evolution, epidemiology, immunology, molecular biology, biofluids, DNA and protein structure and function. All mathematical approaches including computational and visualization approaches are appropriate.