Equilibria of large random Lotka-Volterra systems with vanishing species: a mathematical approach.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Imane Akjouj, Walid Hachem, Mylène Maïda, Jamal Najim
{"title":"Equilibria of large random Lotka-Volterra systems with vanishing species: a mathematical approach.","authors":"Imane Akjouj, Walid Hachem, Mylène Maïda, Jamal Najim","doi":"10.1007/s00285-024-02155-z","DOIUrl":null,"url":null,"abstract":"<p><p>Ecosystems with a large number of species are often modelled as Lotka-Volterra dynamical systems built around a large interaction matrix with random part. Under some known conditions, a global equilibrium exists and is unique. In this article, we rigorously study its statistical properties in the large dimensional regime. Such an equilibrium vector is known to be the solution of a so-called Linear Complementarity Problem. We describe its statistical properties by designing an Approximate Message Passing (AMP) algorithm, a technique that has recently aroused an intense research effort in the fields of statistical physics, machine learning, or communication theory. Interaction matrices based on the Gaussian Orthogonal Ensemble, or following a Wishart distribution are considered. Beyond these models, the AMP approach developed in this article has the potential to describe the statistical properties of equilibria associated to more involved interaction matrix models.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00285-024-02155-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Ecosystems with a large number of species are often modelled as Lotka-Volterra dynamical systems built around a large interaction matrix with random part. Under some known conditions, a global equilibrium exists and is unique. In this article, we rigorously study its statistical properties in the large dimensional regime. Such an equilibrium vector is known to be the solution of a so-called Linear Complementarity Problem. We describe its statistical properties by designing an Approximate Message Passing (AMP) algorithm, a technique that has recently aroused an intense research effort in the fields of statistical physics, machine learning, or communication theory. Interaction matrices based on the Gaussian Orthogonal Ensemble, or following a Wishart distribution are considered. Beyond these models, the AMP approach developed in this article has the potential to describe the statistical properties of equilibria associated to more involved interaction matrix models.

具有消失物种的大型随机 Lotka-Volterra 系统的均衡:一种数学方法。
具有大量物种的生态系统通常被模拟为围绕一个具有随机部分的大型相互作用矩阵而建立的 Lotka-Volterra 动力系统。在某些已知条件下,全局平衡是存在的,而且是唯一的。在本文中,我们将严格研究其在大维度系统中的统计特性。众所周知,这种平衡向量是所谓线性互补问题的解。我们通过设计一种近似消息传递(AMP)算法来描述它的统计特性,这种技术最近在统计物理学、机器学习或通信理论领域引起了广泛的研究。我们考虑了基于高斯正交集合或遵循 Wishart 分布的交互矩阵。除了这些模型之外,本文开发的 AMP 方法还有可能描述与更复杂的交互矩阵模型相关的均衡的统计特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信