Directional flow in perivascular networks: mixed finite elements for reduced-dimensional models on graphs.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Ingeborg G Gjerde, Miroslav Kuchta, Marie E Rognes, Barbara Wohlmuth
{"title":"Directional flow in perivascular networks: mixed finite elements for reduced-dimensional models on graphs.","authors":"Ingeborg G Gjerde, Miroslav Kuchta, Marie E Rognes, Barbara Wohlmuth","doi":"10.1007/s00285-024-02154-0","DOIUrl":null,"url":null,"abstract":"<p><p>Flow of cerebrospinal fluid through perivascular pathways in and around the brain may play a crucial role in brain metabolite clearance. While the driving forces of such flows remain enigmatic, experiments have shown that pulsatility is central. In this work, we present a novel network model for simulating pulsatile fluid flow in perivascular networks, taking the form of a system of Stokes-Brinkman equations posed over a perivascular graph. We apply this model to study physiological questions concerning the mechanisms governing perivascular fluid flow in branching vascular networks. Notably, our findings reveal that even long wavelength arterial pulsations can induce directional flow in asymmetric, branching perivascular networks. In addition, we establish fundamental mathematical and numerical properties of these Stokes-Brinkman network models, with particular attention to increasing graph order and complexity. By introducing weighted norms, we show the well-posedness and stability of primal and dual variational formulations of these equations, and that of mixed finite element discretizations.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11543763/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00285-024-02154-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Flow of cerebrospinal fluid through perivascular pathways in and around the brain may play a crucial role in brain metabolite clearance. While the driving forces of such flows remain enigmatic, experiments have shown that pulsatility is central. In this work, we present a novel network model for simulating pulsatile fluid flow in perivascular networks, taking the form of a system of Stokes-Brinkman equations posed over a perivascular graph. We apply this model to study physiological questions concerning the mechanisms governing perivascular fluid flow in branching vascular networks. Notably, our findings reveal that even long wavelength arterial pulsations can induce directional flow in asymmetric, branching perivascular networks. In addition, we establish fundamental mathematical and numerical properties of these Stokes-Brinkman network models, with particular attention to increasing graph order and complexity. By introducing weighted norms, we show the well-posedness and stability of primal and dual variational formulations of these equations, and that of mixed finite element discretizations.

血管周围网络中的定向流动:图上降维模型的混合有限元。
脑脊液流经大脑内和周围的血管周围通路,可能在大脑代谢物清除过程中起着至关重要的作用。虽然这种流动的驱动力仍然是个谜,但实验表明脉动性是核心。在这项研究中,我们提出了一种新的网络模型,用于模拟血管周围网络中的脉动流体流动,其形式为在血管周围图上提出的斯托克斯-布林克曼方程系统。我们将该模型用于研究有关分支血管网络中血管周围流体流动机制的生理问题。值得注意的是,我们的研究结果表明,即使是长波长的动脉搏动也能在不对称的分支血管周围网络中引起定向流动。此外,我们还建立了这些斯托克斯-布林克曼网络模型的基本数学和数值特性,并特别关注图序和复杂性的增加。通过引入加权规范,我们展示了这些方程的原始和对偶变分公式以及混合有限元离散化公式的良好拟合性和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信