Photocatalytic degradation of methylene blue using a Cu2+-modified bimetallic titanium-based metal organic framework (MIL-125) photocatalyst with enhanced visible light activity.

IF 1.3 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY
Turkish Journal of Chemistry Pub Date : 2024-04-30 eCollection Date: 2024-01-01 DOI:10.55730/1300-0527.3695
Gülsüm Özçelik, Ferda Civan Çavuşoğlu, Şahika Sena Bayazit, Şeyma Özkara Aydinoğlu
{"title":"Photocatalytic degradation of methylene blue using a Cu<sup>2+</sup>-modified bimetallic titanium-based metal organic framework (MIL-125) photocatalyst with enhanced visible light activity.","authors":"Gülsüm Özçelik, Ferda Civan Çavuşoğlu, Şahika Sena Bayazit, Şeyma Özkara Aydinoğlu","doi":"10.55730/1300-0527.3695","DOIUrl":null,"url":null,"abstract":"<p><p>Cu-modified TiO<sub>2</sub> nanoparticles derived from MIL-125 were prepared by solvothermal method for the photocatalytic degradation of methylene blue under visible light illumination. For boosting the photocatalytic performance as well as the physicochemical properties of bare sample, 2 wt % Cu<sup>2+</sup> ions were integrated into the nodes of the MIL-125 framework. The results showed that incorporation of 2 wt % Cu<sup>2+</sup> ions into the MOF framework had significant effects on the crystallographic structure and morphological and optical properties of photocatalytic samples, as well as catalytic activity for the methylene blue degradation reaction. The high activity profile of Cu-modified TiO<sub>2</sub> nanoparticles derived from MIL-125 might be attributed to the increased thermal stability, lower band gap energy, and smaller crystallite size of the sample. Activity tests were carried out at five varying MB initial concentrations and four different pH values. According to the findings, an increase in initial dye concentration resulted in a decrease in degradation efficiency. It was observed that increasing the pH value in the range of 3-11 initially led to higher degradation rates until pH 7, after which the degradation rate began to decline.</p>","PeriodicalId":23367,"journal":{"name":"Turkish Journal of Chemistry","volume":"48 5","pages":"756-769"},"PeriodicalIF":1.3000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11539909/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.55730/1300-0527.3695","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Cu-modified TiO2 nanoparticles derived from MIL-125 were prepared by solvothermal method for the photocatalytic degradation of methylene blue under visible light illumination. For boosting the photocatalytic performance as well as the physicochemical properties of bare sample, 2 wt % Cu2+ ions were integrated into the nodes of the MIL-125 framework. The results showed that incorporation of 2 wt % Cu2+ ions into the MOF framework had significant effects on the crystallographic structure and morphological and optical properties of photocatalytic samples, as well as catalytic activity for the methylene blue degradation reaction. The high activity profile of Cu-modified TiO2 nanoparticles derived from MIL-125 might be attributed to the increased thermal stability, lower band gap energy, and smaller crystallite size of the sample. Activity tests were carried out at five varying MB initial concentrations and four different pH values. According to the findings, an increase in initial dye concentration resulted in a decrease in degradation efficiency. It was observed that increasing the pH value in the range of 3-11 initially led to higher degradation rates until pH 7, after which the degradation rate began to decline.

使用具有增强可见光活性的 Cu2+ 改性双金属钛基金属有机框架 (MIL-125) 光催化剂光催化降解亚甲基蓝。
利用溶热法制备了由 MIL-125 衍生的铜改性 TiO2 纳米粒子,用于在可见光下光催化降解亚甲基蓝。为了提高裸样品的光催化性能和理化性质,在 MIL-125 框架的节点中加入了 2 wt % 的 Cu2+ 离子。结果表明,在 MOF 框架中加入 2 wt % 的 Cu2+ 离子对光催化样品的晶体结构、形态和光学特性以及亚甲基蓝降解反应的催化活性都有显著影响。由 MIL-125 制备的 Cu 改性 TiO2 纳米粒子的高活性特征可能归因于样品热稳定性的提高、带隙能的降低和晶体尺寸的减小。在五种不同的 MB 初始浓度和四种不同的 pH 值条件下进行了活性测试。研究结果表明,初始染料浓度增加会导致降解效率降低。据观察,在 pH 值为 3-11 的范围内,增加 pH 值最初会导致较高的降解率,直到 pH 值为 7,之后降解率开始下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Turkish Journal of Chemistry
Turkish Journal of Chemistry 化学-工程:化工
CiteScore
2.40
自引率
7.10%
发文量
87
审稿时长
3 months
期刊介绍: The Turkish Journal of Chemistry is a bimonthly multidisciplinary journal published by the Scientific and Technological Research Council of Turkey (TÜBİTAK). The journal is dedicated to dissemination of knowledge in all disciplines of chemistry (organic, inorganic, physical, polymeric, technical, theoretical and analytical chemistry) as well as research at the interface with other sciences especially in chemical engineering where molecular aspects are key to the findings. The journal accepts English-language original manuscripts and contribution is open to researchers of all nationalities. The journal publishes refereed original papers, reviews, letters to editor and issues devoted to special fields. All manuscripts are peer-reviewed and electronic processing ensures accurate reproduction of text and data, plus publication times as short as possible.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信