WEST is an ensemble method for spatial transcriptomics analysis.

IF 4.3 Q1 BIOCHEMICAL RESEARCH METHODS
Cell Reports Methods Pub Date : 2024-11-18 Epub Date: 2024-11-07 DOI:10.1016/j.crmeth.2024.100886
Jiazhang Cai, Huimin Cheng, Shushan Wu, Wenxuan Zhong, Guo-Cheng Yuan, Ping Ma
{"title":"WEST is an ensemble method for spatial transcriptomics analysis.","authors":"Jiazhang Cai, Huimin Cheng, Shushan Wu, Wenxuan Zhong, Guo-Cheng Yuan, Ping Ma","doi":"10.1016/j.crmeth.2024.100886","DOIUrl":null,"url":null,"abstract":"<p><p>Spatial transcriptomics is a groundbreaking technology, enabling simultaneous profiling of gene expression and spatial orientation within biological tissues. Yet when analyzing spatial transcriptomics data, effective integration of expression and spatial information poses considerable analytical challenges. Although many methods have been developed to address this issue, many are platform specific and lack the general applicability to analyze diverse datasets. In this article, we propose a method called the weighted ensemble method for spatial transcriptomics (WEST) that utilizes ensemble techniques to improve the performance and robustness of spatial transcriptomics data analytics. We compare the performance of WEST with six methods on both synthetic and real-world datasets. WEST represents a significant advance in detecting spatial domains, offering improved accuracy and flexibility compared to existing methods, making it a valuable tool for spatial transcriptomics data analytics.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":" ","pages":"100886"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.crmeth.2024.100886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Spatial transcriptomics is a groundbreaking technology, enabling simultaneous profiling of gene expression and spatial orientation within biological tissues. Yet when analyzing spatial transcriptomics data, effective integration of expression and spatial information poses considerable analytical challenges. Although many methods have been developed to address this issue, many are platform specific and lack the general applicability to analyze diverse datasets. In this article, we propose a method called the weighted ensemble method for spatial transcriptomics (WEST) that utilizes ensemble techniques to improve the performance and robustness of spatial transcriptomics data analytics. We compare the performance of WEST with six methods on both synthetic and real-world datasets. WEST represents a significant advance in detecting spatial domains, offering improved accuracy and flexibility compared to existing methods, making it a valuable tool for spatial transcriptomics data analytics.

WEST 是一种用于空间转录组学分析的集合方法。
空间转录组学是一项突破性技术,可同时分析生物组织内的基因表达和空间定位。然而,在分析空间转录组学数据时,有效整合表达和空间信息带来了相当大的分析挑战。虽然已经开发了很多方法来解决这个问题,但很多方法都是针对特定平台的,缺乏分析不同数据集的普遍适用性。在本文中,我们提出了一种名为空间转录组学加权集合方法(WEST)的方法,它利用集合技术来提高空间转录组学数据分析的性能和鲁棒性。我们在合成数据集和实际数据集上比较了 WEST 与六种方法的性能。与现有方法相比,WEST 提高了准确性和灵活性,是空间转录组学数据分析的重要工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Reports Methods
Cell Reports Methods Chemistry (General), Biochemistry, Genetics and Molecular Biology (General), Immunology and Microbiology (General)
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
111 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信