Quantifying tumor specificity using Bayesian probabilistic modeling for drug and immunotherapeutic target discovery.

IF 4.3 Q1 BIOCHEMICAL RESEARCH METHODS
Cell Reports Methods Pub Date : 2024-11-18 Epub Date: 2024-11-07 DOI:10.1016/j.crmeth.2024.100900
Guangyuan Li, Daniel Schnell, Anukana Bhattacharjee, Mark Yarmarkovich, Nathan Salomonis
{"title":"Quantifying tumor specificity using Bayesian probabilistic modeling for drug and immunotherapeutic target discovery.","authors":"Guangyuan Li, Daniel Schnell, Anukana Bhattacharjee, Mark Yarmarkovich, Nathan Salomonis","doi":"10.1016/j.crmeth.2024.100900","DOIUrl":null,"url":null,"abstract":"<p><p>In diseases such as cancer, the design of new therapeutic strategies requires extensive, costly, and unfortunately sometimes deadly testing to reveal life threatening off-target effects. We hypothesized that the disease specificity of targets can be systematically learned for all genes by jointly evaluating complementary molecular measurements of healthy tissues using a hierarchical Bayesian modeling approach. Our method, BayesTS, integrates protein and gene expression evidence and includes tunable parameters to moderate tissue essentiality. Applied to all protein coding genes, BayesTS outperforms alternative strategies to define therapeutic targets and nominates previously unknown targets while allowing for incorporation of new types of modalities. To expand target repertoires, we show that extension of BayesTS to splicing antigens and combinatorial target pairs results in more specific targets for therapy. We expect that BayesTS will facilitate improved target prioritization for oncology drug development, ultimately leading to the discovery of more effective and safer treatments.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":" ","pages":"100900"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.crmeth.2024.100900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

In diseases such as cancer, the design of new therapeutic strategies requires extensive, costly, and unfortunately sometimes deadly testing to reveal life threatening off-target effects. We hypothesized that the disease specificity of targets can be systematically learned for all genes by jointly evaluating complementary molecular measurements of healthy tissues using a hierarchical Bayesian modeling approach. Our method, BayesTS, integrates protein and gene expression evidence and includes tunable parameters to moderate tissue essentiality. Applied to all protein coding genes, BayesTS outperforms alternative strategies to define therapeutic targets and nominates previously unknown targets while allowing for incorporation of new types of modalities. To expand target repertoires, we show that extension of BayesTS to splicing antigens and combinatorial target pairs results in more specific targets for therapy. We expect that BayesTS will facilitate improved target prioritization for oncology drug development, ultimately leading to the discovery of more effective and safer treatments.

利用贝叶斯概率模型量化肿瘤特异性,以发现药物和免疫治疗靶点。
在癌症等疾病中,设计新的治疗策略需要进行大量昂贵的测试,不幸的是,有时还需要进行致命的测试,以揭示威胁生命的脱靶效应。我们假设,通过使用分层贝叶斯建模方法联合评估健康组织的互补分子测量结果,可以系统地了解所有基因的疾病特异性靶点。我们的方法 BayesTS 整合了蛋白质和基因表达证据,并包含可调参数,以缓和组织本质。BayesTS 适用于所有蛋白编码基因,在确定治疗靶点方面优于其他策略,并能提名以前未知的靶点,同时允许纳入新型模式。为了扩大靶点范围,我们展示了将 BayesTS 扩展到剪接抗原和组合靶点对,从而获得更多特异性治疗靶点。我们希望 BayesTS 将有助于改进肿瘤药物开发的靶点优先排序,最终发现更有效、更安全的治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Reports Methods
Cell Reports Methods Chemistry (General), Biochemistry, Genetics and Molecular Biology (General), Immunology and Microbiology (General)
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
111 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信