Jianyuan Liu, Xiangjie Duan, Minjie Duan, Yu Jiang, Wei Mao, Lilin Wang, Gang Liu
{"title":"Development and external validation of an interpretable machine learning model for the prediction of intubation in the intensive care unit.","authors":"Jianyuan Liu, Xiangjie Duan, Minjie Duan, Yu Jiang, Wei Mao, Lilin Wang, Gang Liu","doi":"10.1038/s41598-024-77798-5","DOIUrl":null,"url":null,"abstract":"<p><p>Given the limited capacity to accurately determine the necessity for intubation in intensive care unit settings, this study aimed to develop and externally validate an interpretable machine learning model capable of predicting the need for intubation among ICU patients. Seven widely used machine learning (ML) algorithms were employed to construct the prediction models. Adult patients from the Medical Information Mart for Intensive Care IV database who stayed in the ICU for longer than 24 h were included in the development and internal validation. The model was subsequently externally validated using the eICU-CRD database. In addition, the SHapley Additive exPlanations method was employed to interpret the influence of individual parameters on the predictions made by the model. A total of 11,988 patients were included in the final cohort for this study. The CatBoost model demonstrated the best performance (AUC: 0.881). In the external validation set, the efficacy of our model was also confirmed (AUC: 0.750), which suggests robust generalization capabilities. The Glasgow Coma Scale (GCS), body mass index (BMI), arterial partial pressure of oxygen (PaO<sub>2</sub>), respiratory rate (RR) and length of stay (LOS) before ICU were the top 5 features of the CatBoost model with the greatest impact. We developed an externally validated CatBoost model that accurately predicts the need for intubation in ICU patients within 24 to 96 h of admission, facilitating clinical decision-making and has the potential to improve patient outcomes. The prediction model utilizes readily obtainable monitoring parameters and integrates the SHAP method to enhance interpretability, providing clinicians with clear insights into the factors influencing predictions.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-77798-5","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Given the limited capacity to accurately determine the necessity for intubation in intensive care unit settings, this study aimed to develop and externally validate an interpretable machine learning model capable of predicting the need for intubation among ICU patients. Seven widely used machine learning (ML) algorithms were employed to construct the prediction models. Adult patients from the Medical Information Mart for Intensive Care IV database who stayed in the ICU for longer than 24 h were included in the development and internal validation. The model was subsequently externally validated using the eICU-CRD database. In addition, the SHapley Additive exPlanations method was employed to interpret the influence of individual parameters on the predictions made by the model. A total of 11,988 patients were included in the final cohort for this study. The CatBoost model demonstrated the best performance (AUC: 0.881). In the external validation set, the efficacy of our model was also confirmed (AUC: 0.750), which suggests robust generalization capabilities. The Glasgow Coma Scale (GCS), body mass index (BMI), arterial partial pressure of oxygen (PaO2), respiratory rate (RR) and length of stay (LOS) before ICU were the top 5 features of the CatBoost model with the greatest impact. We developed an externally validated CatBoost model that accurately predicts the need for intubation in ICU patients within 24 to 96 h of admission, facilitating clinical decision-making and has the potential to improve patient outcomes. The prediction model utilizes readily obtainable monitoring parameters and integrates the SHAP method to enhance interpretability, providing clinicians with clear insights into the factors influencing predictions.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.