Data-centric approach for instance segmentation in optical waste sorting

IF 7.1 2区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Anna Iliushina , Gleb Mazanov , Sergey Nesteruk , Andrey Pimenov , Anton Stepanov , Nadezhda Mikhaylova , Anna Baldycheva , Andrey Somov
{"title":"Data-centric approach for instance segmentation in optical waste sorting","authors":"Anna Iliushina ,&nbsp;Gleb Mazanov ,&nbsp;Sergey Nesteruk ,&nbsp;Andrey Pimenov ,&nbsp;Anton Stepanov ,&nbsp;Nadezhda Mikhaylova ,&nbsp;Anna Baldycheva ,&nbsp;Andrey Somov","doi":"10.1016/j.wasman.2024.11.002","DOIUrl":null,"url":null,"abstract":"<div><div>Computer vision systems have been integrated into facilities dealing with the sorting of household waste. This solution allows for the sorting efficiency improvement and cost reduction. However, challenges associated with the poor annotation quality of existing waste segmentation datasets, unsuitable environment for recognition on a conveyor belt, or limited data for creating an effective and cost-efficient sorting system using visible range cameras significantly limit the application efficiency of computer vision systems. In this article, we report on the data-centric pipeline for enhancing the precision of predictions in multiclass household waste segmentation on a conveyor belt. In particular, we have demonstrated that by employing a pseudo-annotation approach combined with an object-based data augmentation algorithm, it is possible to train a model on a set of ’simple’ images and achieve satisfactory results when estimating the model on a set of ’complex’ images. We collected and prepared the dataset consisting of 5 k manually labeled data and additionally 10 k pseudo-labeled data by object-based augmentation. The proposed pipeline incorporates data balancing, transfer learning, and pseudo-labeling to improve the mean Average Precision (mAP) of the YOLOV8 segmentation model from 67 % to 83 % for ’simple’ use case scenarios and from 42 % to 59 % or ’complex’ industrial solutions.</div></div>","PeriodicalId":23969,"journal":{"name":"Waste management","volume":"191 ","pages":"Pages 70-80"},"PeriodicalIF":7.1000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste management","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0956053X24005592","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Computer vision systems have been integrated into facilities dealing with the sorting of household waste. This solution allows for the sorting efficiency improvement and cost reduction. However, challenges associated with the poor annotation quality of existing waste segmentation datasets, unsuitable environment for recognition on a conveyor belt, or limited data for creating an effective and cost-efficient sorting system using visible range cameras significantly limit the application efficiency of computer vision systems. In this article, we report on the data-centric pipeline for enhancing the precision of predictions in multiclass household waste segmentation on a conveyor belt. In particular, we have demonstrated that by employing a pseudo-annotation approach combined with an object-based data augmentation algorithm, it is possible to train a model on a set of ’simple’ images and achieve satisfactory results when estimating the model on a set of ’complex’ images. We collected and prepared the dataset consisting of 5 k manually labeled data and additionally 10 k pseudo-labeled data by object-based augmentation. The proposed pipeline incorporates data balancing, transfer learning, and pseudo-labeling to improve the mean Average Precision (mAP) of the YOLOV8 segmentation model from 67 % to 83 % for ’simple’ use case scenarios and from 42 % to 59 % or ’complex’ industrial solutions.
以数据为中心的光学垃圾分类实例分割方法。
计算机视觉系统已被集成到处理家庭垃圾分类的设施中。这种解决方案可以提高分类效率并降低成本。然而,现有垃圾分类数据集的注释质量差、不适合在传送带上进行识别的环境,或使用可见光范围相机创建有效且具有成本效益的分类系统所需的数据有限,这些挑战极大地限制了计算机视觉系统的应用效率。在本文中,我们报告了以数据为中心的管道,用于提高传送带上多类别家庭垃圾分类的预测精度。我们特别证明,通过采用伪标注方法与基于对象的数据增强算法相结合,可以在一组 "简单 "图像上训练模型,并在一组 "复杂 "图像上估计模型时取得令人满意的结果。我们收集并准备了一个数据集,该数据集由 5 千个人工标注数据和 10 千个基于对象增强的伪标注数据组成。所提出的管道结合了数据平衡、迁移学习和伪标记,在 "简单 "用例场景中将 YOLOV8 分段模型的平均精度 (mAP) 从 67% 提高到 83%,在 "复杂 "工业解决方案中则从 42% 提高到 59%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Waste management
Waste management 环境科学-工程:环境
CiteScore
15.60
自引率
6.20%
发文量
492
审稿时长
39 days
期刊介绍: Waste Management is devoted to the presentation and discussion of information on solid wastes,it covers the entire lifecycle of solid. wastes. Scope: Addresses solid wastes in both industrialized and economically developing countries Covers various types of solid wastes, including: Municipal (e.g., residential, institutional, commercial, light industrial) Agricultural Special (e.g., C and D, healthcare, household hazardous wastes, sewage sludge)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信