CT image segmentation of foxtail millet seeds based on semantic segmentation model VGG16-UNet.

IF 4.7 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Yuyuan Miao, Rongxia Wang, Zejun Jing, Kun Wang, Meixia Tan, Fuzhong Li, Wuping Zhang, Jiwan Han, Yuanhuai Han
{"title":"CT image segmentation of foxtail millet seeds based on semantic segmentation model VGG16-UNet.","authors":"Yuyuan Miao, Rongxia Wang, Zejun Jing, Kun Wang, Meixia Tan, Fuzhong Li, Wuping Zhang, Jiwan Han, Yuanhuai Han","doi":"10.1186/s13007-024-01288-y","DOIUrl":null,"url":null,"abstract":"<p><p>Foxtail millet is an important minor cereal crop rich in nutrients. Due to the small size of its seeds, there is little information on the diversity of its seed structure among germplasms, limiting the identification of genes controlling seed development and germination. This paper utilized X-ray computed tomography (CT) scanning technology and deep learning models to reveal the microstructure of foxtail millet seeds, gaining insights into their internal features, distribution, and composition. A total of 100 foxtail millet varieties were scanned with X-ray computed tomography to obtain 3D reconstruction images and slices. Pre-processing steps were adopted to improve image segmentation accuracy, including noise reduction, rotation, contrast enhancement, and brightness enhancement. The experiment revealed that traditional OpenCV image processing methods failed to achieve precise segmentation, whereas deep learning models exhibited outstanding performance in segmenting seed CT slice images. We compared UNet, PSPNet, and DeepLabV3 models, selected different backbones and optimizers based on the dataset, and continuously adjusted learning rates and maximum training epochs to train the models. Results demonstrated that VGG16-UNet achieved an accuracy of 99.19% on the foxtail millet seed CT slice image dataset, outperforming PSPNet and DeepLabV3 models. Compared to ResNet-UNet, VGG16-UNet shows an improvement of approximately 3.18% in accuracy, demonstrating superior performance in accurately segmenting the inner glume, outer glume, embryo, and endosperm under various adhesion conditions. Accurate segmentation of foxtail millet CT images enables analysis of embryo size, endosperm size, and glume thickness, which impact germination, growth, and nutrition. This study fills a gap in small grain structure research, offering insights to optimize agriculture and molecular breeding for improved yield and quality.</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"20 1","pages":"169"},"PeriodicalIF":4.7000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11545449/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1186/s13007-024-01288-y","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Foxtail millet is an important minor cereal crop rich in nutrients. Due to the small size of its seeds, there is little information on the diversity of its seed structure among germplasms, limiting the identification of genes controlling seed development and germination. This paper utilized X-ray computed tomography (CT) scanning technology and deep learning models to reveal the microstructure of foxtail millet seeds, gaining insights into their internal features, distribution, and composition. A total of 100 foxtail millet varieties were scanned with X-ray computed tomography to obtain 3D reconstruction images and slices. Pre-processing steps were adopted to improve image segmentation accuracy, including noise reduction, rotation, contrast enhancement, and brightness enhancement. The experiment revealed that traditional OpenCV image processing methods failed to achieve precise segmentation, whereas deep learning models exhibited outstanding performance in segmenting seed CT slice images. We compared UNet, PSPNet, and DeepLabV3 models, selected different backbones and optimizers based on the dataset, and continuously adjusted learning rates and maximum training epochs to train the models. Results demonstrated that VGG16-UNet achieved an accuracy of 99.19% on the foxtail millet seed CT slice image dataset, outperforming PSPNet and DeepLabV3 models. Compared to ResNet-UNet, VGG16-UNet shows an improvement of approximately 3.18% in accuracy, demonstrating superior performance in accurately segmenting the inner glume, outer glume, embryo, and endosperm under various adhesion conditions. Accurate segmentation of foxtail millet CT images enables analysis of embryo size, endosperm size, and glume thickness, which impact germination, growth, and nutrition. This study fills a gap in small grain structure research, offering insights to optimize agriculture and molecular breeding for improved yield and quality.

基于语义分割模型 VGG16-UNet 的狐尾黍种子 CT 图像分割。
狐尾粟是一种营养丰富的重要小谷类作物。由于其种子体积小,关于其种子结构在不同种质间多样性的信息很少,从而限制了对控制种子发育和萌发的基因的鉴定。本文利用X射线计算机断层扫描(CT)技术和深度学习模型揭示狐尾粟种子的微观结构,深入了解其内部特征、分布和组成。利用X射线计算机断层扫描技术扫描了100个狐尾粟品种,获得了三维重建图像和切片。为提高图像分割的准确性,对图像进行了预处理,包括降噪、旋转、对比度增强和亮度增强。实验结果表明,传统的 OpenCV 图像处理方法无法实现精确分割,而深度学习模型在分割种子 CT 切片图像方面表现出色。我们比较了 UNet、PSPNet 和 DeepLabV3 模型,根据数据集选择了不同的骨干和优化器,并不断调整学习率和最大训练历元来训练模型。结果表明,VGG16-UNet 在狐尾黍种子 CT 切片图像数据集上的准确率达到了 99.19%,优于 PSPNet 和 DeepLabV3 模型。与 ResNet-UNet 相比,VGG16-UNet 的准确率提高了约 3.18%,在各种粘附条件下准确分割内颖、外颖、胚和胚乳方面表现出色。对狐尾粟 CT 图像的准确分割有助于分析影响发芽、生长和营养的胚大小、胚乳大小和颖片厚度。这项研究填补了小粒结构研究的空白,为优化农业和分子育种提供了见解,从而提高了产量和质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Methods
Plant Methods 生物-植物科学
CiteScore
9.20
自引率
3.90%
发文量
121
审稿时长
2 months
期刊介绍: Plant Methods is an open access, peer-reviewed, online journal for the plant research community that encompasses all aspects of technological innovation in the plant sciences. There is no doubt that we have entered an exciting new era in plant biology. The completion of the Arabidopsis genome sequence, and the rapid progress being made in other plant genomics projects are providing unparalleled opportunities for progress in all areas of plant science. Nevertheless, enormous challenges lie ahead if we are to understand the function of every gene in the genome, and how the individual parts work together to make the whole organism. Achieving these goals will require an unprecedented collaborative effort, combining high-throughput, system-wide technologies with more focused approaches that integrate traditional disciplines such as cell biology, biochemistry and molecular genetics. Technological innovation is probably the most important catalyst for progress in any scientific discipline. Plant Methods’ goal is to stimulate the development and adoption of new and improved techniques and research tools and, where appropriate, to promote consistency of methodologies for better integration of data from different laboratories.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信