Mingchao Li, Chen Li, Kang Ye, Yunzhe Xu, Weichen Song, Cihui Liu, Fangjian Xing, Guiyuan Cao, Shibiao Wei, Zhihui Chen, Yunsong Di, Zhixing Gan
{"title":"Self-Powered Photonic Synapses with Rapid Optical Erasing Ability for Neuromorphic Visual Perception.","authors":"Mingchao Li, Chen Li, Kang Ye, Yunzhe Xu, Weichen Song, Cihui Liu, Fangjian Xing, Guiyuan Cao, Shibiao Wei, Zhihui Chen, Yunsong Di, Zhixing Gan","doi":"10.34133/research.0526","DOIUrl":null,"url":null,"abstract":"<p><p>Photonic synapses combining photosensitivity and synaptic function can efficiently perceive and memorize visual information, making them crucial for the development of artificial vision systems. However, the development of high-performance photonic synapses with low power consumption and rapid optical erasing ability remains challenging. Here, we propose a photon-modulated charging/discharging mechanism for self-powered photonic synapses. The current hysteresis enables the devices based on CsPbBr<sub>3</sub>/solvent/carbon nitride multilayer architecture to emulate synaptic behaviors, such as excitatory postsynaptic currents, paired-pulse facilitation, and long/short-term memory. Intriguingly, the unique radiation direction-dependent photocurrent endows the photonic synapses with the capability of optical writing and rapid optical erasing. Moreover, the photonic synapses exhibit exceptional performance in contrast enhancement and noise reduction owing to the notable synaptic plasticity. In simulations based on artificial neural network (ANN) algorithms, the pre-processing by our photonic synapses improves the recognition rate of handwritten digit from 11.4% (200 training epochs) to 85% (~60 training epochs). Furthermore, due to the excellent feature extraction and memory capability, an array based on the photonic synapses can imitate facial recognition of human retina without the assistance of ANN.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"7 ","pages":"0526"},"PeriodicalIF":11.0000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11542608/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.34133/research.0526","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0
Abstract
Photonic synapses combining photosensitivity and synaptic function can efficiently perceive and memorize visual information, making them crucial for the development of artificial vision systems. However, the development of high-performance photonic synapses with low power consumption and rapid optical erasing ability remains challenging. Here, we propose a photon-modulated charging/discharging mechanism for self-powered photonic synapses. The current hysteresis enables the devices based on CsPbBr3/solvent/carbon nitride multilayer architecture to emulate synaptic behaviors, such as excitatory postsynaptic currents, paired-pulse facilitation, and long/short-term memory. Intriguingly, the unique radiation direction-dependent photocurrent endows the photonic synapses with the capability of optical writing and rapid optical erasing. Moreover, the photonic synapses exhibit exceptional performance in contrast enhancement and noise reduction owing to the notable synaptic plasticity. In simulations based on artificial neural network (ANN) algorithms, the pre-processing by our photonic synapses improves the recognition rate of handwritten digit from 11.4% (200 training epochs) to 85% (~60 training epochs). Furthermore, due to the excellent feature extraction and memory capability, an array based on the photonic synapses can imitate facial recognition of human retina without the assistance of ANN.
期刊介绍:
Research serves as a global platform for academic exchange, collaboration, and technological advancements. This journal welcomes high-quality research contributions from any domain, with open arms to authors from around the globe.
Comprising fundamental research in the life and physical sciences, Research also highlights significant findings and issues in engineering and applied science. The journal proudly features original research articles, reviews, perspectives, and editorials, fostering a diverse and dynamic scholarly environment.