Harnessing Novel Reduced Graphene Oxide-Based Aerogel for Efficient Organic Contaminant and Heavy Metal Removal in Aqueous Environments.

IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Nanomaterials Pub Date : 2024-10-26 DOI:10.3390/nano14211708
Sunith B Madduri, Raghava R Kommalapati
{"title":"Harnessing Novel Reduced Graphene Oxide-Based Aerogel for Efficient Organic Contaminant and Heavy Metal Removal in Aqueous Environments.","authors":"Sunith B Madduri, Raghava R Kommalapati","doi":"10.3390/nano14211708","DOIUrl":null,"url":null,"abstract":"<p><p>Ensuring clean water sources is pivotal for sustainable development and the well-being of communities worldwide. This study represents a pioneering effort in water purification, exploring an innovative approach utilizing modified reduced graphene oxide (rGO) aerogels. These advanced materials promise to revolutionize environmental remediation efforts, specifically removing organic contaminants from aqueous solutions. The study investigates the exceptional adsorption properties of rGO-aerogel, enhanced with cysteamine, to understand its efficacy in addressing water pollution challenges. The characterization methods utilized encompass various analytical techniques, including FE-SEM, BET, FTIR, TGA, DSC, XPS, NMR, and elemental analysis. These analyses provide valuable insights into the material's structural modifications and surface chemistry. The research comprehensively explores the intricacies of adsorption kinetics, equilibrium, and isothermal study to unravel the underlying mechanisms governing contaminant removal. MO and Ni<sup>2+</sup> exhibited adsorption of 542.6 and 150.6 mg g<sup>-1</sup>, respectively, at 25 °C. Ni<sup>2+</sup> has unveiled the highest removal at pH 5, and MO has shown high removal in a wide pH range (pH 4-7). Both contaminants have shown fast adsorption kinetic performance on an rGO-aerogel surface. This study aims to identify the synergistic effect of cysteamine and rGO in aerogel formation to remove heavy metals and organic contaminants. These findings mark a significant stride in advancing sustainable water-treatment methods and pioneering in synthesizing innovative materials with versatile applications in environmental contexts, offering a potential solution to the global water pollution crisis.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"14 21","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547916/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano14211708","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Ensuring clean water sources is pivotal for sustainable development and the well-being of communities worldwide. This study represents a pioneering effort in water purification, exploring an innovative approach utilizing modified reduced graphene oxide (rGO) aerogels. These advanced materials promise to revolutionize environmental remediation efforts, specifically removing organic contaminants from aqueous solutions. The study investigates the exceptional adsorption properties of rGO-aerogel, enhanced with cysteamine, to understand its efficacy in addressing water pollution challenges. The characterization methods utilized encompass various analytical techniques, including FE-SEM, BET, FTIR, TGA, DSC, XPS, NMR, and elemental analysis. These analyses provide valuable insights into the material's structural modifications and surface chemistry. The research comprehensively explores the intricacies of adsorption kinetics, equilibrium, and isothermal study to unravel the underlying mechanisms governing contaminant removal. MO and Ni2+ exhibited adsorption of 542.6 and 150.6 mg g-1, respectively, at 25 °C. Ni2+ has unveiled the highest removal at pH 5, and MO has shown high removal in a wide pH range (pH 4-7). Both contaminants have shown fast adsorption kinetic performance on an rGO-aerogel surface. This study aims to identify the synergistic effect of cysteamine and rGO in aerogel formation to remove heavy metals and organic contaminants. These findings mark a significant stride in advancing sustainable water-treatment methods and pioneering in synthesizing innovative materials with versatile applications in environmental contexts, offering a potential solution to the global water pollution crisis.

利用新型还原石墨烯氧化物气凝胶高效去除水环境中的有机污染物和重金属
确保清洁水源对于可持续发展和全球社区的福祉至关重要。这项研究是水净化领域的一项开创性工作,它探索了一种利用改性还原氧化石墨烯(rGO)气凝胶的创新方法。这些先进材料有望彻底改变环境修复工作,特别是去除水溶液中的有机污染物。本研究调查了经半胱胺增强的 rGO 气凝胶的特殊吸附特性,以了解其在应对水污染挑战方面的功效。采用的表征方法包括各种分析技术,包括 FE-SEM、BET、傅立叶变换红外光谱、热重分析、DSC、XPS、核磁共振和元素分析。这些分析为了解材料的结构变化和表面化学性质提供了宝贵的信息。研究全面探讨了吸附动力学、平衡和等温研究的复杂性,以揭示污染物去除的基本机制。在 25 °C 时,MO 和 Ni2+ 的吸附量分别为 542.6 和 150.6 mg g-1。Ni2+在pH值为5时的去除率最高,而MO则在较宽的pH值范围(pH值为4-7)内表现出较高的去除率。这两种污染物在 rGO 气凝胶表面都表现出快速吸附动力学性能。本研究旨在确定半胱胺和 rGO 在气凝胶形成过程中去除重金属和有机污染物的协同效应。这些发现标志着在推进可持续水处理方法方面取得了重大进展,并开创性地合成了可在环境领域广泛应用的创新材料,为解决全球水污染危机提供了潜在的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanomaterials
Nanomaterials NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.50
自引率
9.40%
发文量
3841
审稿时长
14.22 days
期刊介绍: Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信