6-Shogaol Derived from Ginger Inhibits Intestinal Crypt Stem Cell Differentiation and Contributes to Irritable Bowel Syndrome Risk.

IF 11 1区 综合性期刊 Q1 Multidisciplinary
Research Pub Date : 2024-11-07 eCollection Date: 2024-01-01 DOI:10.34133/research.0524
Bing Zhao, Juan Ye, Wenjing Zhao, Xinyu Liu, Hongli Lan, Jinbing Sun, Jiao Chen, Xueting Cai, Qingyun Wei, Qian Zhou, Zhengwei Zhang, Yuze Wu, Yang Yang, Peng Cao
{"title":"6-Shogaol Derived from Ginger Inhibits Intestinal Crypt Stem Cell Differentiation and Contributes to Irritable Bowel Syndrome Risk.","authors":"Bing Zhao, Juan Ye, Wenjing Zhao, Xinyu Liu, Hongli Lan, Jinbing Sun, Jiao Chen, Xueting Cai, Qingyun Wei, Qian Zhou, Zhengwei Zhang, Yuze Wu, Yang Yang, Peng Cao","doi":"10.34133/research.0524","DOIUrl":null,"url":null,"abstract":"<p><p>Dietary factors play a crucial role in irritable bowel syndrome (IBS) pathogenesis. Therefore, the dietary contraindications for patients with IBS require further supplementation. Recent investigations have revealed that ginger consumption may pose a risk of aggravating the symptoms and incidence of IBS; however, the specific mechanism remains unknown. In this study, we developed experimental IBS and intestinal organoid differentiation screening models to elucidate the mechanisms underlying the ginger-mediated exacerbation of IBS symptoms. Subsequently, we used a knockout approach combined with click chemistry as well as virus infection to identify the toxic components of ginger and the target mechanism. Our results showed that a daily intake of 90 to 300 mg/kg ginger (equivalent to a human daily dose of 0.6 to 2 g per person) may pose a risk of exacerbating IBS symptoms. Furthermore, a component derived from 6-gingerol (ginger's main ingredient) through in vivo gastric acid and heat processing inhibited the formation of the eIF3 transcription initiation complex by covalently binding to the Cys<sup>58</sup> site of eIF3A, a key factor regulating intestinal crypt stem cell differentiation, further reducing the goblet cell number and related mucus layer thickness and increasing lipopolysaccharide infiltration and low-grade inflammation in the ileum crypts, thereby exacerbating the symptoms of IBS in mice. Our study suggests that dietary ginger aggravates IBS and provides safety evaluation methods for the proper use of foods in specific populations.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"7 ","pages":"0524"},"PeriodicalIF":11.0000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11542252/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.34133/research.0524","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

Abstract

Dietary factors play a crucial role in irritable bowel syndrome (IBS) pathogenesis. Therefore, the dietary contraindications for patients with IBS require further supplementation. Recent investigations have revealed that ginger consumption may pose a risk of aggravating the symptoms and incidence of IBS; however, the specific mechanism remains unknown. In this study, we developed experimental IBS and intestinal organoid differentiation screening models to elucidate the mechanisms underlying the ginger-mediated exacerbation of IBS symptoms. Subsequently, we used a knockout approach combined with click chemistry as well as virus infection to identify the toxic components of ginger and the target mechanism. Our results showed that a daily intake of 90 to 300 mg/kg ginger (equivalent to a human daily dose of 0.6 to 2 g per person) may pose a risk of exacerbating IBS symptoms. Furthermore, a component derived from 6-gingerol (ginger's main ingredient) through in vivo gastric acid and heat processing inhibited the formation of the eIF3 transcription initiation complex by covalently binding to the Cys58 site of eIF3A, a key factor regulating intestinal crypt stem cell differentiation, further reducing the goblet cell number and related mucus layer thickness and increasing lipopolysaccharide infiltration and low-grade inflammation in the ileum crypts, thereby exacerbating the symptoms of IBS in mice. Our study suggests that dietary ginger aggravates IBS and provides safety evaluation methods for the proper use of foods in specific populations.

从生姜中提取的 6-Shogaol 可抑制肠隐窝干细胞分化并导致肠易激综合征风险。
饮食因素在肠易激综合征(IBS)发病机制中起着至关重要的作用。因此,肠易激综合征患者的饮食禁忌需要进一步补充。最近的研究发现,食用生姜可能会加重肠易激综合征的症状和发病率,但具体机制尚不清楚。在本研究中,我们建立了实验性肠易激综合征和肠道类器官分化筛选模型,以阐明生姜介导的肠易激综合征症状加重的机制。随后,我们使用基因敲除方法结合点击化学和病毒感染来确定生姜的毒性成分和靶机制。我们的研究结果表明,每天摄入 90 至 300 毫克/千克生姜(相当于每人每天摄入 0.6 至 2 克生姜)可能有加重肠易激综合征症状的风险。此外,从 6-姜酚(生姜的主要成分)中提取的一种成分通过体内胃酸和热处理,与 eIF3A 的 Cys58 位点共价结合,抑制了 eIF3 转录起始复合物的形成、通过与调控肠隐窝干细胞分化的关键因子 eIF3A 的 Cys58 位点共价结合,抑制了 eIF3 转录起始复合物的形成,进一步减少了鹅口疮细胞的数量和相关粘液层的厚度,增加了回肠隐窝的脂多糖浸润和低度炎症,从而加重了小鼠肠易激综合征的症状。我们的研究表明,膳食生姜会加重肠易激综合征,并为特定人群正确使用食品提供了安全评估方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Research
Research Multidisciplinary-Multidisciplinary
CiteScore
13.40
自引率
3.60%
发文量
0
审稿时长
14 weeks
期刊介绍: Research serves as a global platform for academic exchange, collaboration, and technological advancements. This journal welcomes high-quality research contributions from any domain, with open arms to authors from around the globe. Comprising fundamental research in the life and physical sciences, Research also highlights significant findings and issues in engineering and applied science. The journal proudly features original research articles, reviews, perspectives, and editorials, fostering a diverse and dynamic scholarly environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信