Exploiting the Bragg Mirror Effect of TiO2 Nanotube Photonic Crystals for Promoting Photoelectrochemical Water Splitting.

IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Nanomaterials Pub Date : 2024-10-23 DOI:10.3390/nano14211695
Ming Meng, Hucheng Zhou, Jing Yang, Liwei Wang, Honglei Yuan, Yanling Hao, Zhixing Gan
{"title":"Exploiting the Bragg Mirror Effect of TiO<sub>2</sub> Nanotube Photonic Crystals for Promoting Photoelectrochemical Water Splitting.","authors":"Ming Meng, Hucheng Zhou, Jing Yang, Liwei Wang, Honglei Yuan, Yanling Hao, Zhixing Gan","doi":"10.3390/nano14211695","DOIUrl":null,"url":null,"abstract":"<p><p>Exploiting the Bragg mirror effect of photonic crystal photoelectrode is desperately desired for photoelectrochemical water splitting. Herein, a novel TiO<sub>2</sub> nanotube photonic crystal bi-layer structure consisting of a top nanotube layer and a bottom nanotube photonic crystal layer is presented. In this architecture, the photonic bandgap of bottom TiO<sub>2</sub> nanotube photonic crystals can be precisely adjusted by modulating the anodization parameters. When the photonic bandgap of bottom TiO<sub>2</sub> nanotube photonic crystals overlaps with the electronic bandgap of TiO<sub>2</sub>, the bottom TiO<sub>2</sub> nanotube photonic crystal layer will act as a Bragg mirror, leading to the boosted ultraviolet light absorption of the top TiO<sub>2</sub> nanotube layer. Benefiting from the promoted UV light absorption, the TiO<sub>2</sub> NT-115-NTPC yields a photocurrent density of 1.4 mA/cm<sup>2</sup> at 0.22 V vs. Ag/AgCl with a Faradic efficiency of 100%, nearly two times higher than that of conventional TiO<sub>2</sub> nanotube arrays. Furthermore, incident photon-to-current conversion efficiency is also promoted within ultraviolet light region. This research offers an effective strategy for improving the performance of photoelectrochemical water splitting through intensifying the light-matter interaction.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"14 21","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547193/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano14211695","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Exploiting the Bragg mirror effect of photonic crystal photoelectrode is desperately desired for photoelectrochemical water splitting. Herein, a novel TiO2 nanotube photonic crystal bi-layer structure consisting of a top nanotube layer and a bottom nanotube photonic crystal layer is presented. In this architecture, the photonic bandgap of bottom TiO2 nanotube photonic crystals can be precisely adjusted by modulating the anodization parameters. When the photonic bandgap of bottom TiO2 nanotube photonic crystals overlaps with the electronic bandgap of TiO2, the bottom TiO2 nanotube photonic crystal layer will act as a Bragg mirror, leading to the boosted ultraviolet light absorption of the top TiO2 nanotube layer. Benefiting from the promoted UV light absorption, the TiO2 NT-115-NTPC yields a photocurrent density of 1.4 mA/cm2 at 0.22 V vs. Ag/AgCl with a Faradic efficiency of 100%, nearly two times higher than that of conventional TiO2 nanotube arrays. Furthermore, incident photon-to-current conversion efficiency is also promoted within ultraviolet light region. This research offers an effective strategy for improving the performance of photoelectrochemical water splitting through intensifying the light-matter interaction.

利用二氧化钛纳米管光子晶体的布拉格镜效应促进光电化学水分离。
利用光子晶体光电电极的布拉格镜效应进行光电化学水分离是人们的迫切愿望。本文提出了一种新型 TiO2 纳米管光子晶体双层结构,该结构由顶部纳米管层和底部纳米管光子晶体层组成。在这种结构中,底部 TiO2 纳米管光子晶体的光子带隙可以通过调节阳极化参数来精确调整。当底部 TiO2 纳米管光子晶体的光子带隙与 TiO2 的电子带隙重叠时,底部 TiO2 纳米管光子晶体层将起到布拉格镜的作用,从而促进顶部 TiO2 纳米管层对紫外线的吸收。得益于对紫外线的吸收,TiO2 NT-115-NTPC 在 0.22 V 电压下与 Ag/AgCl 相比可产生 1.4 mA/cm2 的光电流密度,法拉第效率达到 100%,比传统的 TiO2 纳米管阵列高出近两倍。此外,入射光子到电流的转换效率在紫外光区也有所提高。这项研究为通过加强光物质相互作用来提高光电化学分水性能提供了一种有效的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanomaterials
Nanomaterials NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.50
自引率
9.40%
发文量
3841
审稿时长
14.22 days
期刊介绍: Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信