{"title":"Elucidating Rheological Properties of Cementitious Materials Containing Fly Ash and Nanosilica by Machine Learning.","authors":"Ankang Tian, Yue Gu, Zhenhua Wei, Jianxiong Miao, Xiaoyan Liu, Linhua Jiang","doi":"10.3390/nano14211700","DOIUrl":null,"url":null,"abstract":"<p><p>Researching the rheology contributes to enhancing the physical and mechanical properties of concrete and promoting material sustainability. Despite the challenges posed by numerous factors influencing viscosity, leveraging machine learning in the era of big data emerges as a viable solution for predicting the general properties of construction materials. This study aims to create models to forecast the rheological properties of cementitious materials containing fly ash and nanosilica. Four models-Random Forest, XGBoost, ANN, and RNN (Stacked LSTM)-are employed to predict and assess shear rate versus shear stress and shear rate versus apparent viscosity curves. Through hyperparameter adjustments, RNN (Stacked LSTM) exhibits excellent performance, achieving a coefficient of determination (R<sup>2</sup>) of 0.9582 and 0.9257 for the two curves, demonstrating superior statistical parameters and fitting effects. The RNN (Stacked LSTM) exhibited a better generalization ability, suggesting it will be more reliable for future prediction in cementitious material viscosity.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"14 21","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547307/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano14211700","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Researching the rheology contributes to enhancing the physical and mechanical properties of concrete and promoting material sustainability. Despite the challenges posed by numerous factors influencing viscosity, leveraging machine learning in the era of big data emerges as a viable solution for predicting the general properties of construction materials. This study aims to create models to forecast the rheological properties of cementitious materials containing fly ash and nanosilica. Four models-Random Forest, XGBoost, ANN, and RNN (Stacked LSTM)-are employed to predict and assess shear rate versus shear stress and shear rate versus apparent viscosity curves. Through hyperparameter adjustments, RNN (Stacked LSTM) exhibits excellent performance, achieving a coefficient of determination (R2) of 0.9582 and 0.9257 for the two curves, demonstrating superior statistical parameters and fitting effects. The RNN (Stacked LSTM) exhibited a better generalization ability, suggesting it will be more reliable for future prediction in cementitious material viscosity.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.