PI(3,5)P2 asymmetry during mitosis is essential for asymmetric vacuolar inheritance.

IF 7.4 1区 生物学 Q1 CELL BIOLOGY
Journal of Cell Biology Pub Date : 2025-01-06 Epub Date: 2024-11-08 DOI:10.1083/jcb.202406170
Mariam Huda, Mukadder Koyuncu, Cansu Dilege, Ayse Koca Caydasi
{"title":"PI(3,5)P2 asymmetry during mitosis is essential for asymmetric vacuolar inheritance.","authors":"Mariam Huda, Mukadder Koyuncu, Cansu Dilege, Ayse Koca Caydasi","doi":"10.1083/jcb.202406170","DOIUrl":null,"url":null,"abstract":"<p><p>Phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) is a low-abundance signaling lipid that plays crucial roles in various cellular processes, including endolysosomal system structure/function, stress response, and cell cycle regulation. PI(3,5)P2 synthesis increases in response to environmental stimuli, yet its behavior in cycling cells under basal conditions remains elusive. Here, we analyzed spatiotemporal changes in PI(3,5)P2 levels during the cell cycle of S. cerevisiae. We found that PI(3,5)P2 accumulates on the vacuole in the daughter cell while it disappears from the vacuole in the mother cell during mitosis. Concomitant with the changes in PI(3,5)P2 distribution, the daughter vacuole became more acidic, whereas the acidity of the mother vacuole decreased during mitosis. Our data further showed that both PI(3,5)P2 and the PI(3,5)P2 effector protein Atg18 are determinants of vacuolar-pH asymmetry and acidity. Our work, thus, identifies PI(3,5)P2 as a key factor for the establishment of vacuolar-pH asymmetry, providing insights into how the mother cell ages while the daughter cell is rejuvenated.</p>","PeriodicalId":15211,"journal":{"name":"Journal of Cell Biology","volume":"224 1","pages":""},"PeriodicalIF":7.4000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11554754/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cell Biology","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1083/jcb.202406170","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) is a low-abundance signaling lipid that plays crucial roles in various cellular processes, including endolysosomal system structure/function, stress response, and cell cycle regulation. PI(3,5)P2 synthesis increases in response to environmental stimuli, yet its behavior in cycling cells under basal conditions remains elusive. Here, we analyzed spatiotemporal changes in PI(3,5)P2 levels during the cell cycle of S. cerevisiae. We found that PI(3,5)P2 accumulates on the vacuole in the daughter cell while it disappears from the vacuole in the mother cell during mitosis. Concomitant with the changes in PI(3,5)P2 distribution, the daughter vacuole became more acidic, whereas the acidity of the mother vacuole decreased during mitosis. Our data further showed that both PI(3,5)P2 and the PI(3,5)P2 effector protein Atg18 are determinants of vacuolar-pH asymmetry and acidity. Our work, thus, identifies PI(3,5)P2 as a key factor for the establishment of vacuolar-pH asymmetry, providing insights into how the mother cell ages while the daughter cell is rejuvenated.

有丝分裂过程中PI(3,5)P2的不对称性对不对称空泡遗传至关重要。
磷脂酰肌醇 3,5-二磷酸(PI(3,5)P2)是一种低丰度信号脂质,在多种细胞过程中发挥着关键作用,包括内溶酶体系统结构/功能、应激反应和细胞周期调控。PI(3,5)P2的合成会随着环境刺激而增加,但在基础条件下,它在循环细胞中的行为仍然难以捉摸。在这里,我们分析了麦角菌细胞周期中 PI(3,5)P2 水平的时空变化。我们发现,在有丝分裂过程中,PI(3,5)P2 在子细胞的液泡上积累,而在母细胞中则从液泡上消失。随着 PI(3,5)P2 分布的变化,子细胞液泡的酸性增强,而有丝分裂过程中母细胞液泡的酸性降低。我们的数据进一步表明,PI(3,5)P2 和 PI(3,5)P2 效应蛋白 Atg18 都是液泡-pH 不对称和酸度的决定因素。因此,我们的研究发现,PI(3,5)P2 是建立液泡-pH 不对称的关键因素,这为我们深入了解母细胞如何衰老而子细胞如何年轻化提供了线索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cell Biology
Journal of Cell Biology 生物-细胞生物学
CiteScore
12.60
自引率
2.60%
发文量
213
审稿时长
1 months
期刊介绍: The Journal of Cell Biology (JCB) is a comprehensive journal dedicated to publishing original discoveries across all realms of cell biology. We invite papers presenting novel cellular or molecular advancements in various domains of basic cell biology, along with applied cell biology research in diverse systems such as immunology, neurobiology, metabolism, virology, developmental biology, and plant biology. We enthusiastically welcome submissions showcasing significant findings of interest to cell biologists, irrespective of the experimental approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信