Badreddine Kanouni, Abd Essalam Badoud, Saad Mekhilef, Ahmed Elsanabary, Mohit Bajaj, Ievgen Zaitsev
{"title":"A fuzzy-predictive current control with real-time hardware for PEM fuel cell systems.","authors":"Badreddine Kanouni, Abd Essalam Badoud, Saad Mekhilef, Ahmed Elsanabary, Mohit Bajaj, Ievgen Zaitsev","doi":"10.1038/s41598-024-78030-0","DOIUrl":null,"url":null,"abstract":"<p><p>This research study presents the application of the FC-PCC (Fuzzy Logic Predictive Current Control) algorithm in the context of maximum power point tracking (MPPT) for a proton exchange membrane fuel cell system employing a three-level boost converter (TLBC). The proposed approach involves the integration of an intelligent fuzzy controller with a predictive current control strategy in order to improve the performance of MPP tracking. Initially, the utilization of fuzzy logic involves the utilization of data values obtained from the PEMFC. The maximum point (P-I) of the PEMFC polarization curve is determined, followed by the selection of the reference current. A predictive current control technique employs the reference current to ensure the voltage balance of the output capacitor in the three-level converter. The hardware-in-the-loop system utilizes a real-time and high-speed simulator, specifically the PLECS RT Box 1, to obtain the findings. The computational cost of the overall system is rather low, making it feasible to construct using PLECS RT Box 1. The new MPPT algorithm quickly finds the maximum power point (MPP) and balances the voltage of capacitors in a number of different proton exchange membrane fuel cells. The suggested MPPT technique has been verified to demonstrate rapid tracking of the maximum power point (MPP) location, as well as precise balancing of capacitor voltage and robustness to environmental variations. This approach was tested and found to outperform conventional MPPT methods like Perturb and Observe (P&O) and Incremental Conductance (IC) in terms of tracking duration, precision, and voltage balancing, achieving a 15% reduction in tracking duration, a 5% deviation from the MPP value for voltage, and superior stability under changing temperature and pressure.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-78030-0","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This research study presents the application of the FC-PCC (Fuzzy Logic Predictive Current Control) algorithm in the context of maximum power point tracking (MPPT) for a proton exchange membrane fuel cell system employing a three-level boost converter (TLBC). The proposed approach involves the integration of an intelligent fuzzy controller with a predictive current control strategy in order to improve the performance of MPP tracking. Initially, the utilization of fuzzy logic involves the utilization of data values obtained from the PEMFC. The maximum point (P-I) of the PEMFC polarization curve is determined, followed by the selection of the reference current. A predictive current control technique employs the reference current to ensure the voltage balance of the output capacitor in the three-level converter. The hardware-in-the-loop system utilizes a real-time and high-speed simulator, specifically the PLECS RT Box 1, to obtain the findings. The computational cost of the overall system is rather low, making it feasible to construct using PLECS RT Box 1. The new MPPT algorithm quickly finds the maximum power point (MPP) and balances the voltage of capacitors in a number of different proton exchange membrane fuel cells. The suggested MPPT technique has been verified to demonstrate rapid tracking of the maximum power point (MPP) location, as well as precise balancing of capacitor voltage and robustness to environmental variations. This approach was tested and found to outperform conventional MPPT methods like Perturb and Observe (P&O) and Incremental Conductance (IC) in terms of tracking duration, precision, and voltage balancing, achieving a 15% reduction in tracking duration, a 5% deviation from the MPP value for voltage, and superior stability under changing temperature and pressure.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.