Antioxidant, Anti-Alzheimer's, anticancer, and cytotoxic properties of peanut oil: in vitro, in silico, and GC-MS analysis.

IF 3.8 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Frontiers in Chemistry Pub Date : 2024-10-24 eCollection Date: 2024-01-01 DOI:10.3389/fchem.2024.1487084
Hanène Djeghim, Djamila Benouchenne, El Hassen Mokrani, Huda Alsaeedi, David Cornu, Mikhael Bechelany, Ahmed Barhoum
{"title":"Antioxidant, Anti-Alzheimer's, anticancer, and cytotoxic properties of peanut oil: <i>in vitro</i>, in silico, and GC-MS analysis.","authors":"Hanène Djeghim, Djamila Benouchenne, El Hassen Mokrani, Huda Alsaeedi, David Cornu, Mikhael Bechelany, Ahmed Barhoum","doi":"10.3389/fchem.2024.1487084","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Peanut oil is valued for its mild flavor, rich phytochemical content, therapeutic potential, and associated health benefits. This study aims to analyze the chemical composition, antioxidant properties, and anti-Alzheimer's potential of Algerian peanut oil using both experimental and computational approaches. The goal is to evaluate its suitability for pharmaceutical applications, particularly for its antioxidant, anti-Alzheimer, and anticancer properties.</p><p><strong>Methods: </strong>The chemical composition of the peanut oil was determined using Gas Chromatography-Mass Spectrometry (GC-MS). Antioxidant activity was assessed through DPPH and CUPRAC assays, while enzyme inhibition was evaluated using butyrylcholinesterase (BChE) inhibition assays. In silico molecular docking studies were conducted to predict interactions between key compounds and BChE. Additionally, physicochemical properties were evaluated using Lipinski's rule of five, and cytotoxicity was tested against various cancer cell lines, including melanoma (A2058 and SK-MEL-1), non-small cell lung cancer (NCI-H838), and leukemia (H9).</p><p><strong>Results: </strong>GC-MS identified 20 chemical compounds in the peanut oil, with oleic acid as the predominant compound (41.98%). The antioxidant activity showed an IC50 value of 265.96 ± 14.85 μg/mL in the CUPRAC assay. BChE inhibition was moderate, with 36.47% ± 3.71% enzyme inhibition at 200 μg/mL. Molecular docking studies highlighted 6-methyl octahydro-coumarin with a docking score of -15.86 kJ/mol against BChE, although it was less potent than Galantamine (-23.4 kJ/mol). Physicochemical analysis revealed that oleic acid and palmitic acid exhibit logP values of 5.71 and 5.20, respectively, indicating drug-like potential. Cytotoxicity assessments demonstrated that oleic acid, palmitic acid, and stearic acid were effective against melanoma and lung cancer cells, while oxiraneoctanoic acid, 3-octyl, showed significant activity against leukemia cells.</p><p><strong>Discussion and conclusion: </strong>The results demonstrate that peanut oil possesses notable antioxidant, anti-Alzheimer, and anticancer properties. The high concentration of oleic acid, alongside moderate butyrylcholinesterase (BChE) inhibition and strong cytotoxic effects on various cancer cell lines, highlights its potential as a therapeutic agent. While 6-methyl octahydro-coumarin exhibited favorable docking scores, its lower effectiveness compared to Galantamine suggests that further optimization is required for enhanced efficacy. These findings underscore the potential of peanut oil in pharmaceutical development, with compounds like oleic acid and oxiraneoctanoic acid emerging as promising candidates for continued research and drug development. Peanut oil from Algeria holds significant promise for future applications in antioxidant, neuroprotective, and anticancer therapies.</p>","PeriodicalId":12421,"journal":{"name":"Frontiers in Chemistry","volume":"12 ","pages":"1487084"},"PeriodicalIF":3.8000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11541349/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3389/fchem.2024.1487084","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Peanut oil is valued for its mild flavor, rich phytochemical content, therapeutic potential, and associated health benefits. This study aims to analyze the chemical composition, antioxidant properties, and anti-Alzheimer's potential of Algerian peanut oil using both experimental and computational approaches. The goal is to evaluate its suitability for pharmaceutical applications, particularly for its antioxidant, anti-Alzheimer, and anticancer properties.

Methods: The chemical composition of the peanut oil was determined using Gas Chromatography-Mass Spectrometry (GC-MS). Antioxidant activity was assessed through DPPH and CUPRAC assays, while enzyme inhibition was evaluated using butyrylcholinesterase (BChE) inhibition assays. In silico molecular docking studies were conducted to predict interactions between key compounds and BChE. Additionally, physicochemical properties were evaluated using Lipinski's rule of five, and cytotoxicity was tested against various cancer cell lines, including melanoma (A2058 and SK-MEL-1), non-small cell lung cancer (NCI-H838), and leukemia (H9).

Results: GC-MS identified 20 chemical compounds in the peanut oil, with oleic acid as the predominant compound (41.98%). The antioxidant activity showed an IC50 value of 265.96 ± 14.85 μg/mL in the CUPRAC assay. BChE inhibition was moderate, with 36.47% ± 3.71% enzyme inhibition at 200 μg/mL. Molecular docking studies highlighted 6-methyl octahydro-coumarin with a docking score of -15.86 kJ/mol against BChE, although it was less potent than Galantamine (-23.4 kJ/mol). Physicochemical analysis revealed that oleic acid and palmitic acid exhibit logP values of 5.71 and 5.20, respectively, indicating drug-like potential. Cytotoxicity assessments demonstrated that oleic acid, palmitic acid, and stearic acid were effective against melanoma and lung cancer cells, while oxiraneoctanoic acid, 3-octyl, showed significant activity against leukemia cells.

Discussion and conclusion: The results demonstrate that peanut oil possesses notable antioxidant, anti-Alzheimer, and anticancer properties. The high concentration of oleic acid, alongside moderate butyrylcholinesterase (BChE) inhibition and strong cytotoxic effects on various cancer cell lines, highlights its potential as a therapeutic agent. While 6-methyl octahydro-coumarin exhibited favorable docking scores, its lower effectiveness compared to Galantamine suggests that further optimization is required for enhanced efficacy. These findings underscore the potential of peanut oil in pharmaceutical development, with compounds like oleic acid and oxiraneoctanoic acid emerging as promising candidates for continued research and drug development. Peanut oil from Algeria holds significant promise for future applications in antioxidant, neuroprotective, and anticancer therapies.

花生油的抗氧化、抗老年痴呆、抗癌和细胞毒性特性:体外、硅学和气相色谱-质谱分析。
导言:花生油因其温和的风味、丰富的植物化学成分、治疗潜力和相关的健康益处而备受重视。本研究旨在利用实验和计算方法分析阿尔及利亚花生油的化学成分、抗氧化特性和抗老年痴呆的潜力。目的是评估花生油是否适合制药应用,特别是其抗氧化、抗老年痴呆和抗癌特性:方法:使用气相色谱-质谱法(GC-MS)测定花生油的化学成分。抗氧化活性通过 DPPH 和 CUPRAC 试验进行评估,酶抑制作用则通过丁酰胆碱酯酶(BChE)抑制试验进行评估。为了预测关键化合物与 BChE 之间的相互作用,还进行了硅学分子对接研究。此外,还利用利宾斯基五项法则评估了化合物的理化性质,并测试了其对多种癌细胞株的细胞毒性,包括黑色素瘤(A2058 和 SK-MEL-1)、非小细胞肺癌(NCI-H838)和白血病(H9):GC-MS 鉴定出花生油中含有 20 种化学物质,其中油酸是最主要的化合物(41.98%)。在 CUPRAC 试验中,抗氧化活性的 IC50 值为 265.96 ± 14.85 μg/mL。对 BChE 的抑制作用适中,200 μg/mL 时的酶抑制率为 36.47% ± 3.71%。分子对接研究显示,6-甲基八氢香豆素对 BChE 的对接得分为 -15.86 kJ/mol,但其效力低于加兰他敏(-23.4 kJ/mol)。理化分析表明,油酸和棕榈酸的 logP 值分别为 5.71 和 5.20,显示出类似药物的潜力。细胞毒性评估表明,油酸、棕榈酸和硬脂酸对黑色素瘤和肺癌细胞有效,而 3-辛基环辛酸对白血病细胞有显著活性:研究结果表明,花生油具有显著的抗氧化、抗老年痴呆和抗癌特性。高浓度的油酸以及对丁酰胆硷酯酶(BChE)的适度抑制作用和对各种癌细胞株的强烈细胞毒性作用,凸显了其作为治疗剂的潜力。虽然 6-甲基八氢香豆素显示出良好的对接得分,但与加兰他敏相比,其有效性较低,这表明需要进一步优化以提高疗效。这些发现强调了花生油在药物开发方面的潜力,油酸和环辛酸等化合物有望成为继续研究和药物开发的候选物质。阿尔及利亚的花生油在抗氧化、神经保护和抗癌疗法方面的应用前景广阔。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Chemistry
Frontiers in Chemistry Chemistry-General Chemistry
CiteScore
8.50
自引率
3.60%
发文量
1540
审稿时长
12 weeks
期刊介绍: Frontiers in Chemistry is a high visiblity and quality journal, publishing rigorously peer-reviewed research across the chemical sciences. Field Chief Editor Steve Suib at the University of Connecticut is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to academics, industry leaders and the public worldwide. Chemistry is a branch of science that is linked to all other main fields of research. The omnipresence of Chemistry is apparent in our everyday lives from the electronic devices that we all use to communicate, to foods we eat, to our health and well-being, to the different forms of energy that we use. While there are many subtopics and specialties of Chemistry, the fundamental link in all these areas is how atoms, ions, and molecules come together and come apart in what some have come to call the “dance of life”. All specialty sections of Frontiers in Chemistry are open-access with the goal of publishing outstanding research publications, review articles, commentaries, and ideas about various aspects of Chemistry. The past forms of publication often have specific subdisciplines, most commonly of analytical, inorganic, organic and physical chemistries, but these days those lines and boxes are quite blurry and the silos of those disciplines appear to be eroding. Chemistry is important to both fundamental and applied areas of research and manufacturing, and indeed the outlines of academic versus industrial research are also often artificial. Collaborative research across all specialty areas of Chemistry is highly encouraged and supported as we move forward. These are exciting times and the field of Chemistry is an important and significant contributor to our collective knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信