Emma R Sutton, Ariane Beauvais, Rebecca Yaworski, Yves De Repentigny, Aoife Reilly, Monique Marylin Alves de Almeida, Marc-Olivier Deguise, Kathy L Poulin, Robin J Parks, Bernard L Schneider, Rashmi Kothary
{"title":"Liver SMN restoration rescues the Smn<sup>2B/-</sup> mouse model of spinal muscular atrophy.","authors":"Emma R Sutton, Ariane Beauvais, Rebecca Yaworski, Yves De Repentigny, Aoife Reilly, Monique Marylin Alves de Almeida, Marc-Olivier Deguise, Kathy L Poulin, Robin J Parks, Bernard L Schneider, Rashmi Kothary","doi":"10.1016/j.ebiom.2024.105444","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The liver is a key metabolic organ, acting as a hub to metabolically connect various tissues. Spinal muscular atrophy (SMA) is a neuromuscular disorder whereby patients have an increased susceptibility to developing dyslipidaemia and liver steatosis. It remains unknown whether fatty liver is due to an intrinsic or extrinsic impact of survival motor neuron (SMN) protein depletion.</p><p><strong>Methods: </strong>Using an adeno-associated viral vector with a liver specific promoter (albumin), we restored SMN protein levels in the liver alone in Smn<sup>2B/-</sup> mice, a model of SMA. Experiments assessed central and peripheral impacts using immunoblot, immunohistochemistry, and electron microscopy techniques.</p><p><strong>Findings: </strong>We demonstrate that AAV9-albumin-SMN successfully expresses SMN protein in the liver with no detectable expression in the spinal cord or muscle in Smn<sup>2B/-</sup> mice. Liver intrinsic rescue of SMN protein was sufficient to increase survival of Smn<sup>2B/-</sup> mice. Fatty liver was ameliorated while key markers of liver function were also restored to normal levels. Certain peripheral pathologies were rescued including muscle size and pancreatic cell imbalance. Only a partial CNS recovery was seen using a liver therapeutic strategy alone.</p><p><strong>Interpretation: </strong>The fatty liver phenotype is a direct impact of liver intrinsic SMN protein loss. Correction of SMN protein levels in liver is enough to restore some aspects of disease in SMA. We conclude that the liver is an important contributor to whole-body pathology in Smn<sup>2B/-</sup> mice.</p><p><strong>Funding: </strong>This work was funded by Muscular Dystrophy Association (USA) [grant number 963652 to R.K.]; the Canadian Institutes of Health Research [grant number PJT-186300 to R.K.].</p>","PeriodicalId":11494,"journal":{"name":"EBioMedicine","volume":"110 ","pages":"105444"},"PeriodicalIF":9.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11583733/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EBioMedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ebiom.2024.105444","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The liver is a key metabolic organ, acting as a hub to metabolically connect various tissues. Spinal muscular atrophy (SMA) is a neuromuscular disorder whereby patients have an increased susceptibility to developing dyslipidaemia and liver steatosis. It remains unknown whether fatty liver is due to an intrinsic or extrinsic impact of survival motor neuron (SMN) protein depletion.
Methods: Using an adeno-associated viral vector with a liver specific promoter (albumin), we restored SMN protein levels in the liver alone in Smn2B/- mice, a model of SMA. Experiments assessed central and peripheral impacts using immunoblot, immunohistochemistry, and electron microscopy techniques.
Findings: We demonstrate that AAV9-albumin-SMN successfully expresses SMN protein in the liver with no detectable expression in the spinal cord or muscle in Smn2B/- mice. Liver intrinsic rescue of SMN protein was sufficient to increase survival of Smn2B/- mice. Fatty liver was ameliorated while key markers of liver function were also restored to normal levels. Certain peripheral pathologies were rescued including muscle size and pancreatic cell imbalance. Only a partial CNS recovery was seen using a liver therapeutic strategy alone.
Interpretation: The fatty liver phenotype is a direct impact of liver intrinsic SMN protein loss. Correction of SMN protein levels in liver is enough to restore some aspects of disease in SMA. We conclude that the liver is an important contributor to whole-body pathology in Smn2B/- mice.
Funding: This work was funded by Muscular Dystrophy Association (USA) [grant number 963652 to R.K.]; the Canadian Institutes of Health Research [grant number PJT-186300 to R.K.].
EBioMedicineBiochemistry, Genetics and Molecular Biology-General Biochemistry,Genetics and Molecular Biology
CiteScore
17.70
自引率
0.90%
发文量
579
审稿时长
5 weeks
期刊介绍:
eBioMedicine is a comprehensive biomedical research journal that covers a wide range of studies that are relevant to human health. Our focus is on original research that explores the fundamental factors influencing human health and disease, including the discovery of new therapeutic targets and treatments, the identification of biomarkers and diagnostic tools, and the investigation and modification of disease pathways and mechanisms. We welcome studies from any biomedical discipline that contribute to our understanding of disease and aim to improve human health.