{"title":"Macroclimatic Convergence and Habitat Specialisation Shape the Mediterranean Seed Germination Syndrome","authors":"Diana María Cruz-Tejada, Efisio Mattana, Sergey Rosbakh, Eduardo Fernández-Pascual, Angelino Carta","doi":"10.1002/ece3.70527","DOIUrl":null,"url":null,"abstract":"<p>Ecological theory predicts that plant reproductive phenology in the Mediterranean regions is shaped by evolutionary processes driven by strong seasonality in precipitation–evaporation patterns. Thus, it can be expected that seed germination phenology has adapted to maximise recruitment during the season of highest water availability. Cold-cued and slow germination (i.e., the ‘Mediterranean seed germination syndrome’) has been hypothesised to be an adaptation to ensure that seedling emergence occurs in autumn/early winter, extending the growing season before the subsequent unfavourable summer drought. However, this hypothesis has been tested on individual species or local studies, without a proper synthesis for the whole Mediterranean region. Here we tested, for the first time, the Mediterranean seed germination syndrome using experimental data for 459 species (11,363 records, 59 families) occurring in the Mediterranean Basin. We performed a phylogenetically informed Bayesian meta-analysis to model the effect on germination proportions of seven key experimental cues: mean incubation temperature, alternating temperature regime, light and dormancy-breaking treatments (scarification, warm stratification and cold stratification) and the modulating role of seed mass on seed germination. We show that species from lowland zonal habitats of the Mediterranean align with the Mediterranean germination syndrome hypothesis, with their seeds responding positively to cool, constant temperatures and negatively to light. Yet, habitat specialists (i.e., species restricted to mountains, coasts and wetlands) deviate from the syndrome, showing nearly opposite germination requirements. Seed mass further influences the germination niche and phylogenetically related species exhibit similar germination responses. Cumulatively, these results suggest that evolutionary pressures from local habitat-related conditions override the macroclimatically imposed Mediterranean seed germination syndrome.</p>","PeriodicalId":11467,"journal":{"name":"Ecology and Evolution","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11542993/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology and Evolution","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ece3.70527","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ecological theory predicts that plant reproductive phenology in the Mediterranean regions is shaped by evolutionary processes driven by strong seasonality in precipitation–evaporation patterns. Thus, it can be expected that seed germination phenology has adapted to maximise recruitment during the season of highest water availability. Cold-cued and slow germination (i.e., the ‘Mediterranean seed germination syndrome’) has been hypothesised to be an adaptation to ensure that seedling emergence occurs in autumn/early winter, extending the growing season before the subsequent unfavourable summer drought. However, this hypothesis has been tested on individual species or local studies, without a proper synthesis for the whole Mediterranean region. Here we tested, for the first time, the Mediterranean seed germination syndrome using experimental data for 459 species (11,363 records, 59 families) occurring in the Mediterranean Basin. We performed a phylogenetically informed Bayesian meta-analysis to model the effect on germination proportions of seven key experimental cues: mean incubation temperature, alternating temperature regime, light and dormancy-breaking treatments (scarification, warm stratification and cold stratification) and the modulating role of seed mass on seed germination. We show that species from lowland zonal habitats of the Mediterranean align with the Mediterranean germination syndrome hypothesis, with their seeds responding positively to cool, constant temperatures and negatively to light. Yet, habitat specialists (i.e., species restricted to mountains, coasts and wetlands) deviate from the syndrome, showing nearly opposite germination requirements. Seed mass further influences the germination niche and phylogenetically related species exhibit similar germination responses. Cumulatively, these results suggest that evolutionary pressures from local habitat-related conditions override the macroclimatically imposed Mediterranean seed germination syndrome.
期刊介绍:
Ecology and Evolution is the peer reviewed journal for rapid dissemination of research in all areas of ecology, evolution and conservation science. The journal gives priority to quality research reports, theoretical or empirical, that develop our understanding of organisms and their diversity, interactions between them, and the natural environment.
Ecology and Evolution gives prompt and equal consideration to papers reporting theoretical, experimental, applied and descriptive work in terrestrial and aquatic environments. The journal will consider submissions across taxa in areas including but not limited to micro and macro ecological and evolutionary processes, characteristics of and interactions between individuals, populations, communities and the environment, physiological responses to environmental change, population genetics and phylogenetics, relatedness and kin selection, life histories, systematics and taxonomy, conservation genetics, extinction, speciation, adaption, behaviour, biodiversity, species abundance, macroecology, population and ecosystem dynamics, and conservation policy.