Optimizing pH and Light for Enhanced Carotenoid Synthesis and Antioxidant Properties in Sub-Aerial Cyanobacteria.

IF 3.5 4区 生物学 Q2 MICROBIOLOGY
Lakshmi Singh, Dibyani Prusty, Maheswari Behera, Kahkashan Perveen, Najat A Bukhari
{"title":"Optimizing pH and Light for Enhanced Carotenoid Synthesis and Antioxidant Properties in Sub-Aerial Cyanobacteria.","authors":"Lakshmi Singh, Dibyani Prusty, Maheswari Behera, Kahkashan Perveen, Najat A Bukhari","doi":"10.1002/jobm.202400570","DOIUrl":null,"url":null,"abstract":"<p><p>Carotenoid, natural pigments, synthesized by plants and microbes are now much favored in global markets due to the awareness of their putative health benefits, and a wide array of commercial applications. There is a diversity of natural and synthetic carotenoid, but only a few of them are commercially produced, including carotenes (β-carotene and lycopene) and xanthophylls (astaxanthin, canthaxanthin, lutein, zeaxanthin, and capsanthin). However, for commercial production, plants and algae are more favored than cyanobacteria because of their much less carotenoid synthesis than land plants; although they are well known for producing commercially important carotenoid. But with advances in optimization of their carotenoid production, cyanobacteria can be used as a potential source of carotenoid production in the future allowing us to exploit its various applications. Hence, this study investigated the effects of pH and light conditions on carotenoid production in the sub-aerial cyanobacterium Desertifilum dzianense ON358232.1. The results revealed that the highest carotenoid synthesis occurred under alkaline conditions (pH 9) and red-light exposure, significantly increasing compared to the control (pH 7.2, white light). UV-Vis and FTIR analyses confirmed the presence of β-carotene as the primary carotenoid, demonstrating strong antioxidant potential. The study's findings highlight the optimal environmental parameters for enhancing carotenoid yield, which can be applied for industrial and pharmaceutical uses due to their antioxidant properties.</p>","PeriodicalId":15101,"journal":{"name":"Journal of Basic Microbiology","volume":" ","pages":"e2400570"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Basic Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/jobm.202400570","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Carotenoid, natural pigments, synthesized by plants and microbes are now much favored in global markets due to the awareness of their putative health benefits, and a wide array of commercial applications. There is a diversity of natural and synthetic carotenoid, but only a few of them are commercially produced, including carotenes (β-carotene and lycopene) and xanthophylls (astaxanthin, canthaxanthin, lutein, zeaxanthin, and capsanthin). However, for commercial production, plants and algae are more favored than cyanobacteria because of their much less carotenoid synthesis than land plants; although they are well known for producing commercially important carotenoid. But with advances in optimization of their carotenoid production, cyanobacteria can be used as a potential source of carotenoid production in the future allowing us to exploit its various applications. Hence, this study investigated the effects of pH and light conditions on carotenoid production in the sub-aerial cyanobacterium Desertifilum dzianense ON358232.1. The results revealed that the highest carotenoid synthesis occurred under alkaline conditions (pH 9) and red-light exposure, significantly increasing compared to the control (pH 7.2, white light). UV-Vis and FTIR analyses confirmed the presence of β-carotene as the primary carotenoid, demonstrating strong antioxidant potential. The study's findings highlight the optimal environmental parameters for enhancing carotenoid yield, which can be applied for industrial and pharmaceutical uses due to their antioxidant properties.

优化 pH 值和光照,增强亚气态蓝藻的类胡萝卜素合成和抗氧化特性。
类胡萝卜素是由植物和微生物合成的天然色素,目前在全球市场上备受青睐,这是因为人们认识到它们对健康的益处,以及广泛的商业应用。天然类胡萝卜素和合成类胡萝卜素种类繁多,但只有少数几种可以进行商业生产,其中包括胡萝卜素(β-胡萝卜素和番茄红素)和黄绿素(虾青素、角黄素、叶黄素、玉米黄素和辣椒黄素)。不过,就商业生产而言,植物和藻类比蓝藻更受青睐,因为它们的类胡萝卜素合成量远低于陆地植物;尽管它们以生产具有重要商业价值的类胡萝卜素而闻名。但是,随着类胡萝卜素生产优化技术的进步,蓝藻在未来可作为类胡萝卜素生产的潜在来源,使我们能够开发其各种应用。因此,本研究调查了 pH 值和光照条件对亚气态蓝藻 Desertifilum dzianense ON358232.1 类胡萝卜素产量的影响。结果发现,在碱性条件(pH 值为 9)和红光照射下,类胡萝卜素的合成量最高,与对照组(pH 值为 7.2,白光照射)相比显著增加。紫外可见光和傅立叶变换红外光谱分析证实,β-胡萝卜素是主要的类胡萝卜素,具有很强的抗氧化潜力。研究结果突出了提高类胡萝卜素产量的最佳环境参数,由于其抗氧化特性,类胡萝卜素可用于工业和医药用途。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Basic Microbiology
Journal of Basic Microbiology 生物-微生物学
CiteScore
6.10
自引率
0.00%
发文量
134
审稿时长
1.8 months
期刊介绍: The Journal of Basic Microbiology (JBM) publishes primary research papers on both procaryotic and eucaryotic microorganisms, including bacteria, archaea, fungi, algae, protozoans, phages, viruses, viroids and prions. Papers published deal with: microbial interactions (pathogenic, mutualistic, environmental), ecology, physiology, genetics and cell biology/development, new methodologies, i.e., new imaging technologies (e.g. video-fluorescence microscopy, modern TEM applications) novel molecular biology methods (e.g. PCR-based gene targeting or cassettes for cloning of GFP constructs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信