{"title":"Advances in Discovery and Design of Anti-influenza Virus Peptides.","authors":"Shixin Li, Xi Xie, Shaofen Zhou, Jian He","doi":"10.2174/0109298673325318241004100506","DOIUrl":null,"url":null,"abstract":"<p><p>The influenza virus, a well-known pathogen that causes respiratory illness, remains an important global health threat because of the significant morbidity and mortality rates of people infected with the virus annually. The influenza virus undergoes frequent antigenic variation, and with the increasing frequency of resistant influenza strains against existing antiviral drugs, there is an urgent need for the development of new anti- influenza treatment strategies. Peptides have the potential to offer high potency, selectivity, and relatively low drug resistance. As such, the design and screening of novel anti- influenza virus peptides with high potency have become increasingly important in an effort to fight global influenza epidemics. Herein, we introduce three approaches to developing anti-influenza virus peptides: discovery from natural products, library construction for antiviral peptide screening, and rational design based on functional regions of influenza viral proteins. This review summarizes recent progress in the discovery and design of anti-influenza virus peptides over the past 20 years.</p>","PeriodicalId":10984,"journal":{"name":"Current medicinal chemistry","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0109298673325318241004100506","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The influenza virus, a well-known pathogen that causes respiratory illness, remains an important global health threat because of the significant morbidity and mortality rates of people infected with the virus annually. The influenza virus undergoes frequent antigenic variation, and with the increasing frequency of resistant influenza strains against existing antiviral drugs, there is an urgent need for the development of new anti- influenza treatment strategies. Peptides have the potential to offer high potency, selectivity, and relatively low drug resistance. As such, the design and screening of novel anti- influenza virus peptides with high potency have become increasingly important in an effort to fight global influenza epidemics. Herein, we introduce three approaches to developing anti-influenza virus peptides: discovery from natural products, library construction for antiviral peptide screening, and rational design based on functional regions of influenza viral proteins. This review summarizes recent progress in the discovery and design of anti-influenza virus peptides over the past 20 years.
期刊介绍:
Aims & Scope
Current Medicinal Chemistry covers all the latest and outstanding developments in medicinal chemistry and rational drug design. Each issue contains a series of timely in-depth reviews and guest edited thematic issues written by leaders in the field covering a range of the current topics in medicinal chemistry. The journal also publishes reviews on recent patents. Current Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments.