Kelli D Fenelon, Priyanshi Borad, Biraaj Rout, Parisa Boodaghi Malidarreh, Mohammad Sadegh Nasr, Jacob M Luber, Theodora Koromila
{"title":"Su(H) Modulates Enhancer Transcriptional Bursting in Prelude to Gastrulation.","authors":"Kelli D Fenelon, Priyanshi Borad, Biraaj Rout, Parisa Boodaghi Malidarreh, Mohammad Sadegh Nasr, Jacob M Luber, Theodora Koromila","doi":"10.3390/cells13211759","DOIUrl":null,"url":null,"abstract":"<p><p>Transcriptional regulation, orchestrated by the interplay between transcription factors (TFs) and enhancers, governs gene expression dynamics crucial for cellular processes. While gross qualitative fluctuations in transcription factor-dependent gene expression patterning have a long history of characterization, the roles of these factors in the nuclei retaining expression in the presence or absence of these factors are now observable using modern techniques. Our study investigates the impact of Suppressor of Hairless (Su(H)), a broadly expressed transcription factor, on enhancer-driven transcriptional modulation using <i>Drosophila</i> early embryos as a model system. Building upon previous findings, we employ super-resolution microscopy to dissect Su(H)'s influence on <i>sog-Distal</i> (<i>sogD</i>) enhancer activity specifically in nuclei with preserved <i>sogD</i>-driven expression in the absence of Su(H) binding. We demonstrate that Su(H) occupancy perturbations alter expression levels and bursting dynamics. Notably, Su(H) absence during embryonic development exhibits region-specific effects, inhibiting expression dorsally and stabilizing expression ventrally, implying a nuanced role in enhancer regulation. Our findings shed light on the intricate mechanisms that govern transcriptional dynamics and suggest a critical patterning role for Notch/Hairless signaling in <i>sog</i> expression as embryos transition to gastrulation.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"13 21","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11545809/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/cells13211759","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Transcriptional regulation, orchestrated by the interplay between transcription factors (TFs) and enhancers, governs gene expression dynamics crucial for cellular processes. While gross qualitative fluctuations in transcription factor-dependent gene expression patterning have a long history of characterization, the roles of these factors in the nuclei retaining expression in the presence or absence of these factors are now observable using modern techniques. Our study investigates the impact of Suppressor of Hairless (Su(H)), a broadly expressed transcription factor, on enhancer-driven transcriptional modulation using Drosophila early embryos as a model system. Building upon previous findings, we employ super-resolution microscopy to dissect Su(H)'s influence on sog-Distal (sogD) enhancer activity specifically in nuclei with preserved sogD-driven expression in the absence of Su(H) binding. We demonstrate that Su(H) occupancy perturbations alter expression levels and bursting dynamics. Notably, Su(H) absence during embryonic development exhibits region-specific effects, inhibiting expression dorsally and stabilizing expression ventrally, implying a nuanced role in enhancer regulation. Our findings shed light on the intricate mechanisms that govern transcriptional dynamics and suggest a critical patterning role for Notch/Hairless signaling in sog expression as embryos transition to gastrulation.
CellsBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
9.90
自引率
5.00%
发文量
3472
审稿时长
16 days
期刊介绍:
Cells (ISSN 2073-4409) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to cell biology, molecular biology and biophysics. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.