Cheng-Kun He , Ming-Chun Hung , Chong-Hao Hxu , Yi-Hsien Hsieh , Yung-Sheng Lin
{"title":"Pitfalls in measuring solution toxicity using the level of bioluminescence inhibition in Aliivibrio fischeri","authors":"Cheng-Kun He , Ming-Chun Hung , Chong-Hao Hxu , Yi-Hsien Hsieh , Yung-Sheng Lin","doi":"10.1016/j.cbpc.2024.110067","DOIUrl":null,"url":null,"abstract":"<div><div>Toxic emission from industrial activity is a serious problem, particularly with regard to the quality of water. Thus, the ISO 11348-3 standard for assessing water quality has been established. This method is used to determine solution toxicity from the bioluminescence inhibition of <em>Aliivibrio fischeri</em>. However, the accuracy of measurements is influenced by the selection of individual reaction time points. This study explores the utility of the area under the curve (AUC) method in water quality detection and evaluates how <em>A. fischeri</em> responds to three toxicants, namely ethanol, acetone, and zinc sulfate, over time. The half-maximal effective concentrations of these three substances were found to be 10.13 %, 5.02 %, and 19.49 mg/L, respectively. Compared with the results from individual reaction time point assessments, the results of AUC comprehensively captured the effects of the toxicants, including time-dependent effects and hormetic effects, by capturing dynamic changes under different toxicant concentrations and reaction times. Therefore, AUC analysis mitigates the pitfalls associated with individual reaction times and provides a more accurate and reliable assessment method for water quality detection, contributing to a better understanding of the impact of toxic substances on aquatic environments.</div></div>","PeriodicalId":10602,"journal":{"name":"Comparative Biochemistry and Physiology C-toxicology & Pharmacology","volume":"287 ","pages":"Article 110067"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology C-toxicology & Pharmacology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1532045624002357","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Toxic emission from industrial activity is a serious problem, particularly with regard to the quality of water. Thus, the ISO 11348-3 standard for assessing water quality has been established. This method is used to determine solution toxicity from the bioluminescence inhibition of Aliivibrio fischeri. However, the accuracy of measurements is influenced by the selection of individual reaction time points. This study explores the utility of the area under the curve (AUC) method in water quality detection and evaluates how A. fischeri responds to three toxicants, namely ethanol, acetone, and zinc sulfate, over time. The half-maximal effective concentrations of these three substances were found to be 10.13 %, 5.02 %, and 19.49 mg/L, respectively. Compared with the results from individual reaction time point assessments, the results of AUC comprehensively captured the effects of the toxicants, including time-dependent effects and hormetic effects, by capturing dynamic changes under different toxicant concentrations and reaction times. Therefore, AUC analysis mitigates the pitfalls associated with individual reaction times and provides a more accurate and reliable assessment method for water quality detection, contributing to a better understanding of the impact of toxic substances on aquatic environments.
期刊介绍:
Part C: Toxicology and Pharmacology. This journal is concerned with chemical and drug action at different levels of organization, biotransformation of xenobiotics, mechanisms of toxicity, including reactive oxygen species and carcinogenesis, endocrine disruptors, natural products chemistry, and signal transduction with a molecular approach to these fields.