Impact of quantum information encoding and metallic leads on dynamical multipartite correlation formation in semiconductor quantum dot arrays.

IF 2.3 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
Nikolaos Petropoulos, Elena Blokhina
{"title":"Impact of quantum information encoding and metallic leads on dynamical multipartite correlation formation in semiconductor quantum dot arrays.","authors":"Nikolaos Petropoulos, Elena Blokhina","doi":"10.1088/1361-648X/ad906e","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates quantum information scrambling (QIS) in a semiconductor quantum dot array. Starting with the 1D Transverse Field Ising model, we expand to more relevant quasi-2D frameworks such as the Heisenberg chain, super-extended Fermi-Hubbard (FH) and hardcore FH models. Assessing their relevance to semiconductor spin-qubit quantum computers, simulations of multipartite correlation formation examine qubit encoding strategies' fidelity, stability, and robustness, revealing trade-offs among these aspects. Furthermore, we investigate the weakly coupled metallic injector/detector (I/D) leads' significant impact on QIS behavior by employing multi-lead<b><i>N</i></b>-single orbital impurities weakly coupled Anderson models and studying the unitary evolution of the system. We observe sign flips in spatiotemporal tripartite mutual information which result in significant effects on dynamical correlation structures and their formation. Exploring carrier number effects, we identify optimal regions for QIS enhancement. Our findings emphasize the necessity of proper qubit encoding and I/D leads' influence on quantum information dynamics.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/ad906e","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates quantum information scrambling (QIS) in a semiconductor quantum dot array. Starting with the 1D Transverse Field Ising model, we expand to more relevant quasi-2D frameworks such as the Heisenberg chain, super-extended Fermi-Hubbard (FH) and hardcore FH models. Assessing their relevance to semiconductor spin-qubit quantum computers, simulations of multipartite correlation formation examine qubit encoding strategies' fidelity, stability, and robustness, revealing trade-offs among these aspects. Furthermore, we investigate the weakly coupled metallic injector/detector (I/D) leads' significant impact on QIS behavior by employing multi-leadN-single orbital impurities weakly coupled Anderson models and studying the unitary evolution of the system. We observe sign flips in spatiotemporal tripartite mutual information which result in significant effects on dynamical correlation structures and their formation. Exploring carrier number effects, we identify optimal regions for QIS enhancement. Our findings emphasize the necessity of proper qubit encoding and I/D leads' influence on quantum information dynamics.

量子信息编码和金属引线对半导体量子点阵列中动态多方相关性形成的影响。
本研究探讨了半导体量子点阵列中的量子信息扰乱(QIS)问题。从一维横向场伊辛模型开始,我们扩展到更相关的准二维框架,如海森堡链、超扩展费米-哈伯德和硬核费米-哈伯德模型。为了评估这些模型与半导体自旋量子比特计算机的相关性,我们模拟了多方纠缠的形成,考察了量子比特编码策略的保真度、稳定性和鲁棒性,揭示了这些方面的权衡。此外,我们采用Ω引线 N-单轨道杂质弱耦合安德森模型,研究了弱耦合金属注入器/检测器(I/D)引线对 QIS 行为的重大影响。我们观察到时空三方互信息 I3 的符号翻转,这对动态量子纠缠结构及其形成产生了重大影响。通过探索载流子数量效应,我们确定了增强量子纠缠信息的最佳区域。我们的研究结果强调了正确的量子位编码的必要性,以及在噪声和杂质中 I/D 导向对量子器件的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Physics: Condensed Matter
Journal of Physics: Condensed Matter 物理-物理:凝聚态物理
CiteScore
5.30
自引率
7.40%
发文量
1288
审稿时长
2.1 months
期刊介绍: Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信