{"title":"Autophagy Regulator Rufy 4 Promotes Osteoclastic Bone Resorption by Orchestrating Cytoskeletal Organization via Its RUN Domain.","authors":"Eiko Sakai, Minoru Saito, Yu Koyanagi, Yoshitsugu Takayama, Fatima Farhana, Yu Yamaguchi, Takayuki Tsukuba","doi":"10.3390/cells13211766","DOIUrl":null,"url":null,"abstract":"<p><p>Rufy4, a protein belonging to the RUN and FYVE domain-containing protein family, participates in various cellular processes such as autophagy and intracellular trafficking. However, its role in osteoclast-mediated bone resorption remains uncertain. In this study, we investigated the expression and role of the <i>Rufy4</i> gene in osteoclasts using small interfering RNA (siRNA) transfection and gene overexpression systems. Our findings revealed a significant increase in Rufy4 expression during osteoclast differentiation. Silencing <i>Rufy4</i> enhanced osteoclast differentiation, intracellular cathepsin K levels, and formation of axial protrusive structures but suppressed bone resorption. Conversely, overexpressing wild-type <i>Rufy4</i> in osteoclasts hindered differentiation while promoting podosome formation and bone resorption. Similarly, overexpression of a <i>Rufy4</i> variant lacking the RUN domain mimics the effects of <i>Rufy4</i> knockdown, significantly increasing intracellular cathepsin K levels, promoting osteoclastogenesis, and elongated axial protrusions formation, yet inhibiting bone resorption. These findings indicate that Rufy4 plays a critical role in osteoclast differentiation and bone resorption by regulating the cytoskeletal organization through its RUN domain. Our study provides new insights into the molecular mechanisms governing osteoclast activity and underscores Rufy4's potential as a novel therapeutic target for bone disorders characterized by excessive bone resorption.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"13 21","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11545195/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/cells13211766","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Rufy4, a protein belonging to the RUN and FYVE domain-containing protein family, participates in various cellular processes such as autophagy and intracellular trafficking. However, its role in osteoclast-mediated bone resorption remains uncertain. In this study, we investigated the expression and role of the Rufy4 gene in osteoclasts using small interfering RNA (siRNA) transfection and gene overexpression systems. Our findings revealed a significant increase in Rufy4 expression during osteoclast differentiation. Silencing Rufy4 enhanced osteoclast differentiation, intracellular cathepsin K levels, and formation of axial protrusive structures but suppressed bone resorption. Conversely, overexpressing wild-type Rufy4 in osteoclasts hindered differentiation while promoting podosome formation and bone resorption. Similarly, overexpression of a Rufy4 variant lacking the RUN domain mimics the effects of Rufy4 knockdown, significantly increasing intracellular cathepsin K levels, promoting osteoclastogenesis, and elongated axial protrusions formation, yet inhibiting bone resorption. These findings indicate that Rufy4 plays a critical role in osteoclast differentiation and bone resorption by regulating the cytoskeletal organization through its RUN domain. Our study provides new insights into the molecular mechanisms governing osteoclast activity and underscores Rufy4's potential as a novel therapeutic target for bone disorders characterized by excessive bone resorption.
CellsBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
9.90
自引率
5.00%
发文量
3472
审稿时长
16 days
期刊介绍:
Cells (ISSN 2073-4409) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to cell biology, molecular biology and biophysics. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.