Faiz Ali Khan, Dalia Fouad, Farid S Ataya, Na Fang, Jingcheng Dong, Shaoping Ji
{"title":"FXR1 associates with and degrades PDZK1IP1 and ATOH8 mRNAs and promotes esophageal cancer progression.","authors":"Faiz Ali Khan, Dalia Fouad, Farid S Ataya, Na Fang, Jingcheng Dong, Shaoping Ji","doi":"10.1186/s13062-024-00553-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The growing body of evidence suggests that RNA-binding proteins (RBPs) have an important function in cancer biology. This research characterizes the expression status of fragile X-related protein 1 (FXR1) in esophageal cancer (ESCA) cell lines and understands its mechanistic importance in ESCA tumor biology.</p><p><strong>Methods: </strong>The role of FXR1, PDZK1IP1, and ATOH8 in the malignant biological behaviors of ESCA cells was investigated using in-vitro and in-vivo experiments.</p><p><strong>Results: </strong>FXR1 was aberrantly overexpressed at both the transcript and protein levels in ESCA cells. Deficiency of FXR1 in ESCA cells was associated with decreased cell proliferation, viability and compromised cell migration compared to the control group. In addition, the inhibition of FXR1 leads to the promotion of apoptosis and cell cycle arrest in ESCA cells. Furthermore, FXR1 knockdown stabilizes senescence markers, promoting cellular senescence and decreasing cancer growth. Mechanistically, FXR1 negatively regulated PDZK1IP1 or ATOH8 transcripts by promoting mRNA degradation via direct interaction with its 3'UTR. PDZK1IP1 or ATOH8 overexpression predominantly inhibited the tumor-promotive phenotype in FXR1-overexpressed cells. Furthermore, FXR1 inhibition and PDZK1IP1 or ATOH8 overexpression in combination with FXR1-overexpressed cells significantly decreased xenograft tumor formation and enhanced nude mouse survival without causing apparent toxicity (P < 0.01). In the FXR1 knockdown group, the tumor weight of mice decreased by 80% compared to the control group (p < 0.01).</p><p><strong>Conclusions: </strong>Our results demonstrate FXR1's oncogenic involvement in ESCA cell lines, suggesting that FXR1 may be implicated in ESCA development by regulating the stability of PDZK1IP1 and ATOH8 mRNAs. For the first time, our findings emphasize the importance of FXR1-PDZK1IP1 and -ATOH8 functional modules in the development of ESCA, which might have potential diagnostic or therapeutic implications.</p>","PeriodicalId":9164,"journal":{"name":"Biology Direct","volume":"19 1","pages":"104"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11542266/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology Direct","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1186/s13062-024-00553-3","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The growing body of evidence suggests that RNA-binding proteins (RBPs) have an important function in cancer biology. This research characterizes the expression status of fragile X-related protein 1 (FXR1) in esophageal cancer (ESCA) cell lines and understands its mechanistic importance in ESCA tumor biology.
Methods: The role of FXR1, PDZK1IP1, and ATOH8 in the malignant biological behaviors of ESCA cells was investigated using in-vitro and in-vivo experiments.
Results: FXR1 was aberrantly overexpressed at both the transcript and protein levels in ESCA cells. Deficiency of FXR1 in ESCA cells was associated with decreased cell proliferation, viability and compromised cell migration compared to the control group. In addition, the inhibition of FXR1 leads to the promotion of apoptosis and cell cycle arrest in ESCA cells. Furthermore, FXR1 knockdown stabilizes senescence markers, promoting cellular senescence and decreasing cancer growth. Mechanistically, FXR1 negatively regulated PDZK1IP1 or ATOH8 transcripts by promoting mRNA degradation via direct interaction with its 3'UTR. PDZK1IP1 or ATOH8 overexpression predominantly inhibited the tumor-promotive phenotype in FXR1-overexpressed cells. Furthermore, FXR1 inhibition and PDZK1IP1 or ATOH8 overexpression in combination with FXR1-overexpressed cells significantly decreased xenograft tumor formation and enhanced nude mouse survival without causing apparent toxicity (P < 0.01). In the FXR1 knockdown group, the tumor weight of mice decreased by 80% compared to the control group (p < 0.01).
Conclusions: Our results demonstrate FXR1's oncogenic involvement in ESCA cell lines, suggesting that FXR1 may be implicated in ESCA development by regulating the stability of PDZK1IP1 and ATOH8 mRNAs. For the first time, our findings emphasize the importance of FXR1-PDZK1IP1 and -ATOH8 functional modules in the development of ESCA, which might have potential diagnostic or therapeutic implications.
期刊介绍:
Biology Direct serves the life science research community as an open access, peer-reviewed online journal, providing authors and readers with an alternative to the traditional model of peer review. Biology Direct considers original research articles, hypotheses, comments, discovery notes and reviews in subject areas currently identified as those most conducive to the open review approach, primarily those with a significant non-experimental component.