{"title":"Novel Pharmaceutical Cocrystal Consisting of Chlorzoxazone and Nicotinamide: A New Promising Carrier for Solubility Augmentation.","authors":"Arzoo Sekhani, Rahul Jha, Pranav J Shah","doi":"10.1089/adt.2024.051","DOIUrl":null,"url":null,"abstract":"<p><p>\n <i>Chlorzoxazone (CHZ) is a centrally acting muscle relaxant used to treat muscle spasms. It is employed as a first-line medication for treating muscle spasms, offering both musculoskeletal relaxation and mild sedative effects. According to the biopharmaceutics classification system, it belongs to class II drug having poor solubility and high permeability. In order to improve the flow property, water solubility, and dissolution of CHZ, CHZ-nicotinamide (NA) cocrystal was prepared by liquid-assisted grinding cocrystallization (LAG CC) method using methanol as the choice of solvent. CHZ-NA cocrystal was characterized by differential scanning calorimeter (DSC), powder X-ray diffraction (PXRD), Fourier transform infrared spectrometry, and scanning electron microscopy (SEM). DSC scan showed a sharp endothermic peak shift, which is caused by the formation of a new crystal form with altered physical properties, which was further confirmed by PXRD. Also, a change in the surface morphology of LAG CC compared to CHZ was observed in SEM. The resultant CHZ-NA cocrystal displayed improved powder flow properties compared to the native form of CHZ. LAG CC demonstrated a 3.1- and 2.6-fold increase in saturated solubility and intrinsic dissolution rate, respectively, compared to CHZ alone. Furthermore, the <i>in vitro</i> dissolution study showed that the cumulative dissolution of CHZ in 2 h was about 53%. Whereas, dissolution of LAG CC reached 99% in 2 h, showing obvious dissolution improvement. Thus, CHZ-NA cocrystal could significantly improve the flow properties, solubility and dissolution of CHZ.</i>\n </p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":" ","pages":"425-434"},"PeriodicalIF":1.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Assay and drug development technologies","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/adt.2024.051","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/8 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Chlorzoxazone (CHZ) is a centrally acting muscle relaxant used to treat muscle spasms. It is employed as a first-line medication for treating muscle spasms, offering both musculoskeletal relaxation and mild sedative effects. According to the biopharmaceutics classification system, it belongs to class II drug having poor solubility and high permeability. In order to improve the flow property, water solubility, and dissolution of CHZ, CHZ-nicotinamide (NA) cocrystal was prepared by liquid-assisted grinding cocrystallization (LAG CC) method using methanol as the choice of solvent. CHZ-NA cocrystal was characterized by differential scanning calorimeter (DSC), powder X-ray diffraction (PXRD), Fourier transform infrared spectrometry, and scanning electron microscopy (SEM). DSC scan showed a sharp endothermic peak shift, which is caused by the formation of a new crystal form with altered physical properties, which was further confirmed by PXRD. Also, a change in the surface morphology of LAG CC compared to CHZ was observed in SEM. The resultant CHZ-NA cocrystal displayed improved powder flow properties compared to the native form of CHZ. LAG CC demonstrated a 3.1- and 2.6-fold increase in saturated solubility and intrinsic dissolution rate, respectively, compared to CHZ alone. Furthermore, the in vitro dissolution study showed that the cumulative dissolution of CHZ in 2 h was about 53%. Whereas, dissolution of LAG CC reached 99% in 2 h, showing obvious dissolution improvement. Thus, CHZ-NA cocrystal could significantly improve the flow properties, solubility and dissolution of CHZ.
期刊介绍:
ASSAY and Drug Development Technologies provides access to novel techniques and robust tools that enable critical advances in early-stage screening. This research published in the Journal leads to important therapeutics and platforms for drug discovery and development. This reputable peer-reviewed journal features original papers application-oriented technology reviews, topical issues on novel and burgeoning areas of research, and reports in methodology and technology application.
ASSAY and Drug Development Technologies coverage includes:
-Assay design, target development, and high-throughput technologies-
Hit to Lead optimization and medicinal chemistry through preclinical candidate selection-
Lab automation, sample management, bioinformatics, data mining, virtual screening, and data analysis-
Approaches to assays configured for gene families, inherited, and infectious diseases-
Assays and strategies for adapting model organisms to drug discovery-
The use of stem cells as models of disease-
Translation of phenotypic outputs to target identification-
Exploration and mechanistic studies of the technical basis for assay and screening artifacts