A novel, sensitive, and fast ultra-high-performance liquid chromatography tandem mass spectrometry method for TNG908 determination in dog plasma and pharmacokinetic study
{"title":"A novel, sensitive, and fast ultra-high-performance liquid chromatography tandem mass spectrometry method for TNG908 determination in dog plasma and pharmacokinetic study","authors":"Weiwei Zhu, Huiying Zhang, Fan Li","doi":"10.1002/bmc.6039","DOIUrl":null,"url":null,"abstract":"<p>TNG908 is a potent and selective protein arginase methyltransferase 5 (PRMT5) inhibitor that is currently going through phase I/II clinical development for the treatment of non-small cell lung cancer. To facilitate pharmacokinetic and toxicokinetic studies of TNG908, here, we reported an ultra-high-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method for the detection of TNG908 in dogs. The dog plasma samples were precipitated by acetonitrile and analyzed using a Waters ACQUITY BEH C<sub>18</sub> column combined with a Thermo triple quadrupole mass spectrometer. The mobile phase consisted of 0.1% formic acid solution and acetonitrile, at a flow rate of 0.3 mL/min. TNG908 and internal standard were monitored by selective reaction monitoring (SRM) with <i>m/z</i> 410.2 > 150.1 and <i>m/z</i> 394.2 > 278.1, respectively. The method demonstrated excellent linearity over the concentration range of 1–1000 ng/mL, with a correlation coefficient greater than 0.995. Acetonitrile-mediated protein precipitation showed high extraction efficiency and a recovery above 80%. The validated assay was further applied to measure TNG908 in dog plasma after oral and intravenous administration and achieved success. The obtained pharmacokinetic parameters indicated low clearance of TNG908 (3.7 ± 0.8 mL/min/kg) and moderate oral bioavailability (>36.4%).</p>","PeriodicalId":8861,"journal":{"name":"Biomedical Chromatography","volume":"39 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Chromatography","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bmc.6039","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
TNG908 is a potent and selective protein arginase methyltransferase 5 (PRMT5) inhibitor that is currently going through phase I/II clinical development for the treatment of non-small cell lung cancer. To facilitate pharmacokinetic and toxicokinetic studies of TNG908, here, we reported an ultra-high-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method for the detection of TNG908 in dogs. The dog plasma samples were precipitated by acetonitrile and analyzed using a Waters ACQUITY BEH C18 column combined with a Thermo triple quadrupole mass spectrometer. The mobile phase consisted of 0.1% formic acid solution and acetonitrile, at a flow rate of 0.3 mL/min. TNG908 and internal standard were monitored by selective reaction monitoring (SRM) with m/z 410.2 > 150.1 and m/z 394.2 > 278.1, respectively. The method demonstrated excellent linearity over the concentration range of 1–1000 ng/mL, with a correlation coefficient greater than 0.995. Acetonitrile-mediated protein precipitation showed high extraction efficiency and a recovery above 80%. The validated assay was further applied to measure TNG908 in dog plasma after oral and intravenous administration and achieved success. The obtained pharmacokinetic parameters indicated low clearance of TNG908 (3.7 ± 0.8 mL/min/kg) and moderate oral bioavailability (>36.4%).
期刊介绍:
Biomedical Chromatography is devoted to the publication of original papers on the applications of chromatography and allied techniques in the biological and medical sciences. Research papers and review articles cover the methods and techniques relevant to the separation, identification and determination of substances in biochemistry, biotechnology, molecular biology, cell biology, clinical chemistry, pharmacology and related disciplines. These include the analysis of body fluids, cells and tissues, purification of biologically important compounds, pharmaco-kinetics and sequencing methods using HPLC, GC, HPLC-MS, TLC, paper chromatography, affinity chromatography, gel filtration, electrophoresis and related techniques.