Circulating Mitochondrial N-Formyl Peptides Are Associated with Acute Respiratory Distress Syndrome after Cardiopulmonary Bypass and Regulate Endothelial Barrier through FPR2.
{"title":"Circulating Mitochondrial <i>N</i>-Formyl Peptides Are Associated with Acute Respiratory Distress Syndrome after Cardiopulmonary Bypass and Regulate Endothelial Barrier through FPR2.","authors":"Peng Lu, Xiaopei Li, Jinqiang Wang, Xiangyu Li, Zihao Shen, Yuanpu Qi, Mingyu Chu, Xin Yao, Xiao Zhang, Yu Zheng, Faliang Zhan, Meijuan Song, Xiaowei Wang","doi":"10.1165/rcmb.2024-0076OC","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiopulmonary bypass (CPB) increases the risk of acute respiratory distress syndrome (ARDS) because of endothelial cell (EC) barrier dysfunction. However, the specific role of mitochondrial <i>N</i>-formyl peptides (mtNFPs) in ARDS after CPB remains unexplored. Here, we investigated the differential expression of circulating mtNFPs in patients after CPB, focusing on the novel role of FPR2 (formyl-peptide receptor 2) in ECs. Concentrations of circulating mtNFPs were assessed using ELISA. Several mtNFPs (ND4 [nicotinamide adenine dinucleotide dehydrogenase subunit 4], ND5, ND6, and Cox1) were significantly upregulated in patients with ARDS at Day 1 after CPB compared with patients without ARDS. Higher concentrations of ND6 were correlated with worse ratios of arterial oxygen pressure to fraction of inspired oxygen (<i>r</i> = -0.2219; <i>P</i> < 0.0001) and cardiac troponin T (<i>r</i> = 2.107; <i>P</i> < 0.0001). Using patient-derived serum and a rat lung ischemia-reperfusion injury model, we observed a positive correlation between serum ND6 concentration and ARDS, which is also associated with EC barrier dysfunction. <i>In vitro</i> experiments, using transendothelial electric resistance measurements and fluorescence microscopy with FITC-labeled vascular endothelial cadherin, demonstrated that ND6 disrupts the EC barrier through FPR2. Furthermore, FPR2 controls the release of ND6 out of mitochondria and cytoplasm under hypoxia-reoxygenation. Activated FPR2 leads to the upregulation of NF-κB by inducing IκBα phosphorylation, promoting ICAM1 (intercellular cell adhesion molecule-1) and VCAM1 expression, thereby compromising EC barrier integrity. Circulating proinflammatory and barrier-disruptive mtNFPs, particularly ND6, are associated with ARDS in patients undergoing CPB. The novel ND6-FPR2 axis regulates inflammation and EC permeability through the NF-κB pathway.</p>","PeriodicalId":7655,"journal":{"name":"American Journal of Respiratory Cell and Molecular Biology","volume":" ","pages":"533-550"},"PeriodicalIF":5.9000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Respiratory Cell and Molecular Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1165/rcmb.2024-0076OC","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cardiopulmonary bypass (CPB) increases the risk of acute respiratory distress syndrome (ARDS) because of endothelial cell (EC) barrier dysfunction. However, the specific role of mitochondrial N-formyl peptides (mtNFPs) in ARDS after CPB remains unexplored. Here, we investigated the differential expression of circulating mtNFPs in patients after CPB, focusing on the novel role of FPR2 (formyl-peptide receptor 2) in ECs. Concentrations of circulating mtNFPs were assessed using ELISA. Several mtNFPs (ND4 [nicotinamide adenine dinucleotide dehydrogenase subunit 4], ND5, ND6, and Cox1) were significantly upregulated in patients with ARDS at Day 1 after CPB compared with patients without ARDS. Higher concentrations of ND6 were correlated with worse ratios of arterial oxygen pressure to fraction of inspired oxygen (r = -0.2219; P < 0.0001) and cardiac troponin T (r = 2.107; P < 0.0001). Using patient-derived serum and a rat lung ischemia-reperfusion injury model, we observed a positive correlation between serum ND6 concentration and ARDS, which is also associated with EC barrier dysfunction. In vitro experiments, using transendothelial electric resistance measurements and fluorescence microscopy with FITC-labeled vascular endothelial cadherin, demonstrated that ND6 disrupts the EC barrier through FPR2. Furthermore, FPR2 controls the release of ND6 out of mitochondria and cytoplasm under hypoxia-reoxygenation. Activated FPR2 leads to the upregulation of NF-κB by inducing IκBα phosphorylation, promoting ICAM1 (intercellular cell adhesion molecule-1) and VCAM1 expression, thereby compromising EC barrier integrity. Circulating proinflammatory and barrier-disruptive mtNFPs, particularly ND6, are associated with ARDS in patients undergoing CPB. The novel ND6-FPR2 axis regulates inflammation and EC permeability through the NF-κB pathway.
期刊介绍:
The American Journal of Respiratory Cell and Molecular Biology publishes papers that report significant and original observations in the area of pulmonary biology. The focus of the Journal includes, but is not limited to, cellular, biochemical, molecular, developmental, genetic, and immunologic studies of lung cells and molecules.