Circulating mtNFPs Are Associated with ARDS after CPB and Regulate Endothelial Barrier through FPR2.

IF 5.9 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Peng Lu, Xiaopei Li, Jinqiang Wang, Xiangyu Li, Zihao Shen, Yuanpu Qi, Mingyu Chu, Xin Yao, Xiao Zhang, Yu Zheng, Faliang Zhan, Meijuan Song, Xiaowei Wang
{"title":"Circulating mtNFPs Are Associated with ARDS after CPB and Regulate Endothelial Barrier through FPR2.","authors":"Peng Lu, Xiaopei Li, Jinqiang Wang, Xiangyu Li, Zihao Shen, Yuanpu Qi, Mingyu Chu, Xin Yao, Xiao Zhang, Yu Zheng, Faliang Zhan, Meijuan Song, Xiaowei Wang","doi":"10.1165/rcmb.2024-0076OC","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiopulmonary bypass (CPB) increases the risk of acute respiratory distress syndrome (ARDS) due to endothelial cell (EC) barrier dysfunction. However, the specific role of mitochondrial N-formyl peptides (mtNFPs) in ARDS following CPB remains unexplored. Here, we investigated the differential expression of circulating mtNFPs in patients after CPB, focusing on the novel role of FPR2 in ECs. Levels of circulating mtNFPs were assessed using enzyme-linked immunosorbent assay (ELISA). Several mtNFPs (ND4, ND5, ND6, and Cox1) were significantly upregulated in patients with ARDS at day 1 post-CPB compared to patients without ARDS. Higher levels of ND6 were correlated with worst PaO<sub>2</sub>/FiO<sub>2</sub> (r=-0.2219 and P<0.0001) and cardiac Troponin T (r=2.107 and P<0.0001). Utilizing patient-derived serum and a rat lung ischemia reperfusion injury (LIRI) model, we observed a positive correlation between serum ND6 concentration and ARDS, which is also associated with EC barrier dysfunction. In vitro experiments, using trans-endothelial electric resistance (TEER) measurements and fluorescence microscopy with FITC-labeled VE-cadherin, demonstrated that ND6 disrupts the EC barrier through FPR2. Furthermore, FPR2 controls the release of ND6 out of mitochondria and cytoplasm under hypoxia reoxygenation (HR). Activated FPR2 leads to upregulation of nuclear transcription factor-kappa B (NF-κB) by inducing IκBα phosphorylation, promoting ICAM1 and VCAM1 expression, thereby compromising EC barrier integrity. Circulating pro-inflammatory and barrier-disruptive mtNFPs, particularly ND6, are associated with ARDS in patients undergoing CPB. The novel ND6-FPR2 axis regulates inflammation and EC permeability through the NF-κB pathway.</p>","PeriodicalId":7655,"journal":{"name":"American Journal of Respiratory Cell and Molecular Biology","volume":" ","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Respiratory Cell and Molecular Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1165/rcmb.2024-0076OC","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cardiopulmonary bypass (CPB) increases the risk of acute respiratory distress syndrome (ARDS) due to endothelial cell (EC) barrier dysfunction. However, the specific role of mitochondrial N-formyl peptides (mtNFPs) in ARDS following CPB remains unexplored. Here, we investigated the differential expression of circulating mtNFPs in patients after CPB, focusing on the novel role of FPR2 in ECs. Levels of circulating mtNFPs were assessed using enzyme-linked immunosorbent assay (ELISA). Several mtNFPs (ND4, ND5, ND6, and Cox1) were significantly upregulated in patients with ARDS at day 1 post-CPB compared to patients without ARDS. Higher levels of ND6 were correlated with worst PaO2/FiO2 (r=-0.2219 and P<0.0001) and cardiac Troponin T (r=2.107 and P<0.0001). Utilizing patient-derived serum and a rat lung ischemia reperfusion injury (LIRI) model, we observed a positive correlation between serum ND6 concentration and ARDS, which is also associated with EC barrier dysfunction. In vitro experiments, using trans-endothelial electric resistance (TEER) measurements and fluorescence microscopy with FITC-labeled VE-cadherin, demonstrated that ND6 disrupts the EC barrier through FPR2. Furthermore, FPR2 controls the release of ND6 out of mitochondria and cytoplasm under hypoxia reoxygenation (HR). Activated FPR2 leads to upregulation of nuclear transcription factor-kappa B (NF-κB) by inducing IκBα phosphorylation, promoting ICAM1 and VCAM1 expression, thereby compromising EC barrier integrity. Circulating pro-inflammatory and barrier-disruptive mtNFPs, particularly ND6, are associated with ARDS in patients undergoing CPB. The novel ND6-FPR2 axis regulates inflammation and EC permeability through the NF-κB pathway.

循环中的 mtNFPs 与 CPB 后的 ARDS 有关,并通过 FPR2 调节内皮屏障。
由于内皮细胞(EC)屏障功能障碍,心肺旁路(CPB)增加了急性呼吸窘迫综合征(ARDS)的风险。然而,线粒体 N-甲酰肽(mtNFPs)在 CPB 后 ARDS 中的特殊作用仍未得到研究。在此,我们研究了 CPB 后患者循环中 mtNFPs 的不同表达,重点关注 FPR2 在心肌中的新作用。我们使用酶联免疫吸附试验(ELISA)评估了循环中 mtNFPs 的水平。与无 ARDS 的患者相比,ARDS 患者在心肺复苏术后第 1 天的几种 mtNFPs(ND4、ND5、ND6 和 Cox1)明显上调。较高水平的 ND6 与最差的 PaO2/FiO2 相关(r=-0.2219 和 P
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.20
自引率
3.10%
发文量
370
审稿时长
3-8 weeks
期刊介绍: The American Journal of Respiratory Cell and Molecular Biology publishes papers that report significant and original observations in the area of pulmonary biology. The focus of the Journal includes, but is not limited to, cellular, biochemical, molecular, developmental, genetic, and immunologic studies of lung cells and molecules.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信