Sujit A Ekka, William F Hunt, Richard A McLaughlin
{"title":"Systematic evaluation of swale length, shape, and longitudinal slope with simulated highway runoff for better swale design.","authors":"Sujit A Ekka, William F Hunt, Richard A McLaughlin","doi":"10.1007/s11356-024-35474-1","DOIUrl":null,"url":null,"abstract":"<p><p>Swales are a low-cost, conveyance and treatment system to manage roadway runoff, but available design guidance is limited. Eight grass swales were constructed in Raleigh, North Carolina, USA, to systematically evaluate the effects of design factors: length, shape, and longitudinal slope under two different storm sizes. Water from an onsite reservoir was used to generate synthetic runoff and simulate flow through the swales. Inflow volume, total suspended sediment (TSS), nitrogen, phosphorus, and four total metals (copper, lead, zinc, and cadmium) were tested with simulated levels representing highway runoff. Efficiency ratios were used to estimate the reductions in inflow volume, pollutant concentrations, and mass loads. Swale length, shape, longitudinal slope, and storm size significantly influenced runoff volume reduction. The longer (30 m) trapezoidal swale constructed on the flatter (1%) longitudinal slope provided maximum reductions in sediment and heavy metal concentrations during small-medium storms. Larger storms had modestly reduced pollutant and volume mitigation. Effluent nutrient concentrations generally exceeded the influent exporting nitrogen and phosphorus from all swale configurations. Significantly better pollutant load reductions were provided by the longer swales for all pollutants, except dissolved phosphorus. Therefore, to optimize swale function, designers could maximize the swale length to the greatest extent practicable, particularly when swales receive inflow from end-of-pipe systems draining roadway surfaces. The trapezoidal cross-section was superior to the triangular cross-section for stormwater treatment. Proper vegetation establishment and maintaining optimal grass height are key to proper swale functioning.</p>","PeriodicalId":545,"journal":{"name":"Environmental Science and Pollution Research","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Pollution Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s11356-024-35474-1","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Swales are a low-cost, conveyance and treatment system to manage roadway runoff, but available design guidance is limited. Eight grass swales were constructed in Raleigh, North Carolina, USA, to systematically evaluate the effects of design factors: length, shape, and longitudinal slope under two different storm sizes. Water from an onsite reservoir was used to generate synthetic runoff and simulate flow through the swales. Inflow volume, total suspended sediment (TSS), nitrogen, phosphorus, and four total metals (copper, lead, zinc, and cadmium) were tested with simulated levels representing highway runoff. Efficiency ratios were used to estimate the reductions in inflow volume, pollutant concentrations, and mass loads. Swale length, shape, longitudinal slope, and storm size significantly influenced runoff volume reduction. The longer (30 m) trapezoidal swale constructed on the flatter (1%) longitudinal slope provided maximum reductions in sediment and heavy metal concentrations during small-medium storms. Larger storms had modestly reduced pollutant and volume mitigation. Effluent nutrient concentrations generally exceeded the influent exporting nitrogen and phosphorus from all swale configurations. Significantly better pollutant load reductions were provided by the longer swales for all pollutants, except dissolved phosphorus. Therefore, to optimize swale function, designers could maximize the swale length to the greatest extent practicable, particularly when swales receive inflow from end-of-pipe systems draining roadway surfaces. The trapezoidal cross-section was superior to the triangular cross-section for stormwater treatment. Proper vegetation establishment and maintaining optimal grass height are key to proper swale functioning.
期刊介绍:
Environmental Science and Pollution Research (ESPR) serves the international community in all areas of Environmental Science and related subjects with emphasis on chemical compounds. This includes:
- Terrestrial Biology and Ecology
- Aquatic Biology and Ecology
- Atmospheric Chemistry
- Environmental Microbiology/Biobased Energy Sources
- Phytoremediation and Ecosystem Restoration
- Environmental Analyses and Monitoring
- Assessment of Risks and Interactions of Pollutants in the Environment
- Conservation Biology and Sustainable Agriculture
- Impact of Chemicals/Pollutants on Human and Animal Health
It reports from a broad interdisciplinary outlook.