Early- and Late-Stage Auditory Processing of Speech Versus Non-Speech Sounds in Children With Autism Spectrum Disorder: An ERP and Oscillatory Activity Study
Elizabeth V. Edgar, Kjersti McGuire, Kevin A. Pelphrey, Pamela Ventola, Stefon van Noordt, Michael J. Crowley
{"title":"Early- and Late-Stage Auditory Processing of Speech Versus Non-Speech Sounds in Children With Autism Spectrum Disorder: An ERP and Oscillatory Activity Study","authors":"Elizabeth V. Edgar, Kjersti McGuire, Kevin A. Pelphrey, Pamela Ventola, Stefon van Noordt, Michael J. Crowley","doi":"10.1002/dev.22552","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Individuals with autism spectrum disorder (ASD) often exhibit greater sensitivity to non-speech sounds, reduced sensitivity to speech, and increased variability in cortical activity during auditory speech processing. We assessed differences in cortical responses and variability in early and later processing stages of auditory speech versus non-speech sounds in typically developing (TD) children and children with ASD. Twenty-eight 4- to 9-year-old children (14 ASDs) listened to speech and non-speech sounds during an electroencephalography session. We measured peak amplitudes for early (P2) and later (P3a) stages of auditory processing and inter-trial theta phase coherence as a marker of cortical variability. TD children were more sensitive to speech sounds during early and later processing stages than ASD children, reflected in larger P2 and P3a amplitudes. Individually, twice as many TD children showed reliable differentiation between speech and non-speech sounds compared to children with ASD. Children with ASD showed greater intra-individual variability in theta responses to speech sounds during early and later processing stages. Children with ASD show atypical auditory processing of fundamental speech sounds, perhaps due to reduced and more variable cortical activation. These atypicalities in the consistency of cortical responses to fundamental speech features may impact the development of cortical networks and have downstream effects on more complex forms of language processing.</p>\n </div>","PeriodicalId":11086,"journal":{"name":"Developmental psychobiology","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental psychobiology","FirstCategoryId":"102","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dev.22552","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Individuals with autism spectrum disorder (ASD) often exhibit greater sensitivity to non-speech sounds, reduced sensitivity to speech, and increased variability in cortical activity during auditory speech processing. We assessed differences in cortical responses and variability in early and later processing stages of auditory speech versus non-speech sounds in typically developing (TD) children and children with ASD. Twenty-eight 4- to 9-year-old children (14 ASDs) listened to speech and non-speech sounds during an electroencephalography session. We measured peak amplitudes for early (P2) and later (P3a) stages of auditory processing and inter-trial theta phase coherence as a marker of cortical variability. TD children were more sensitive to speech sounds during early and later processing stages than ASD children, reflected in larger P2 and P3a amplitudes. Individually, twice as many TD children showed reliable differentiation between speech and non-speech sounds compared to children with ASD. Children with ASD showed greater intra-individual variability in theta responses to speech sounds during early and later processing stages. Children with ASD show atypical auditory processing of fundamental speech sounds, perhaps due to reduced and more variable cortical activation. These atypicalities in the consistency of cortical responses to fundamental speech features may impact the development of cortical networks and have downstream effects on more complex forms of language processing.
期刊介绍:
Developmental Psychobiology is a peer-reviewed journal that publishes original research papers from the disciplines of psychology, biology, neuroscience, and medicine that contribute to an understanding of behavior development. Research that focuses on development in the embryo/fetus, neonate, juvenile, or adult animal and multidisciplinary research that relates behavioral development to anatomy, physiology, biochemistry, genetics, or evolution is appropriate. The journal represents a broad phylogenetic perspective on behavior development by publishing studies of invertebrates, fish, birds, humans, and other animals. The journal publishes experimental and descriptive studies whether carried out in the laboratory or field.
The journal also publishes review articles and theoretical papers that make important conceptual contributions. Special dedicated issues of Developmental Psychobiology , consisting of invited papers on a topic of general interest, may be arranged with the Editor-in-Chief.
Developmental Psychobiology also publishes Letters to the Editor, which discuss issues of general interest or material published in the journal. Letters discussing published material may correct errors, provide clarification, or offer a different point of view. Authors should consult the editors on the preparation of these contributions.