Alexander Perez Roxas, Han Yu, Mohsen Tamtaji, Zhenggen Yang, Zhengtang Luo
{"title":"Rapid, Controlled Branching Polymerization of Cyanoacrylate via Pathway-Enabled, Site-Specific Branching Initiation","authors":"Alexander Perez Roxas, Han Yu, Mohsen Tamtaji, Zhenggen Yang, Zhengtang Luo","doi":"10.1002/marc.202400658","DOIUrl":null,"url":null,"abstract":"<p>Controlled branched structures remain a key synthetic limitation for monomeric tissue adhesives because their on-site polymerization that enables adhesion formation requires rapid kinetics, high conversion, and straightforward setup. In this context, site-specific branching initiation by using evolmers is potentially effective for structural control; however, the efficiency and kinetics in current reaction setups persists to be a major challenge. In this paper, an evolmer induces a controlled branching polymerization of cyanoacrylate amid the high monomer reactivity useful in rapid adhesion. The contrasting reactivities between the vinyl and the initiating groups in the evolmer molecule generate a kinetic pathway that favors a control-enabling branching mechanism. Through density functional theory calculations, the reaction pathway toward branching is shown to kinetically favor site-specific initiation by six orders of magnitude than the route toward non-specificity. Reaction monitoring confirms the branching polymerization after the polymerization with the evolmer forms a more compact structure than the linear counterpart. Control of branching density is demonstrated in rapid polymerizations within minutes and in polymerizations completed in an instant. These results provide a template for achieving site-specific branching initiation during adhesion formation and, broadly, where conditions for kinetic control are necessary.</p>","PeriodicalId":205,"journal":{"name":"Macromolecular Rapid Communications","volume":"46 2","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11756863/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Rapid Communications","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/marc.202400658","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Controlled branched structures remain a key synthetic limitation for monomeric tissue adhesives because their on-site polymerization that enables adhesion formation requires rapid kinetics, high conversion, and straightforward setup. In this context, site-specific branching initiation by using evolmers is potentially effective for structural control; however, the efficiency and kinetics in current reaction setups persists to be a major challenge. In this paper, an evolmer induces a controlled branching polymerization of cyanoacrylate amid the high monomer reactivity useful in rapid adhesion. The contrasting reactivities between the vinyl and the initiating groups in the evolmer molecule generate a kinetic pathway that favors a control-enabling branching mechanism. Through density functional theory calculations, the reaction pathway toward branching is shown to kinetically favor site-specific initiation by six orders of magnitude than the route toward non-specificity. Reaction monitoring confirms the branching polymerization after the polymerization with the evolmer forms a more compact structure than the linear counterpart. Control of branching density is demonstrated in rapid polymerizations within minutes and in polymerizations completed in an instant. These results provide a template for achieving site-specific branching initiation during adhesion formation and, broadly, where conditions for kinetic control are necessary.
期刊介绍:
Macromolecular Rapid Communications publishes original research in polymer science, ranging from chemistry and physics of polymers to polymers in materials science and life sciences.