{"title":"p300 Maintains Primordial Follicle Activation by Repressing <i>VEGFA</i> Transcription.","authors":"Meina He, Yaoyun Liang, Xiaoran Nie, Tuo Zhang, Danqing Zhao, Jixian Zhang, Huan Lin, Zhirui Zeng, Xingyu Song, Yitong Wang, Shiling Ran, Shuyun Zhao, Tengxiang Chen, Chunlin Zhang, Zhanhui Feng","doi":"10.1152/ajpcell.00198.2024","DOIUrl":null,"url":null,"abstract":"<p><p>During the reproductive life, most primordial follicles remain dormant for years or decades, while some are progressively activated for development. <u>Misactivation of primordial follicles can cause ovarian diseases,</u> <u>for example,</u> <u>premature ovarian insufficiency (POI).</u> Our results show that p300 expression increased with primordial follicle activation. Using a p300 inhibitor resulted in premature activation of primordial follicles in cultured mouse ovaries. Conversely, the ratio of primordial follicle activation was markedly decreased upon culturing with the p300 agonist. Furthermore, p300 regulated primordial follicle activation by inhibiting <i>Vegfa</i> transcription in granulosa cells. Additionally, this study was extended to potential clinical applications, showing that short-term treatment with a p300 inhibitor <i>in vitro</i> significantly increased primordial follicle activation in newborn mouse ovaries after dorsal kidney membrane transplantation in female NSG mice. Our results revealed that p300 controls the activation of primordial follicles in mammalian ovaries.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Cell physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1152/ajpcell.00198.2024","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
During the reproductive life, most primordial follicles remain dormant for years or decades, while some are progressively activated for development. Misactivation of primordial follicles can cause ovarian diseases,for example,premature ovarian insufficiency (POI). Our results show that p300 expression increased with primordial follicle activation. Using a p300 inhibitor resulted in premature activation of primordial follicles in cultured mouse ovaries. Conversely, the ratio of primordial follicle activation was markedly decreased upon culturing with the p300 agonist. Furthermore, p300 regulated primordial follicle activation by inhibiting Vegfa transcription in granulosa cells. Additionally, this study was extended to potential clinical applications, showing that short-term treatment with a p300 inhibitor in vitro significantly increased primordial follicle activation in newborn mouse ovaries after dorsal kidney membrane transplantation in female NSG mice. Our results revealed that p300 controls the activation of primordial follicles in mammalian ovaries.
期刊介绍:
The American Journal of Physiology-Cell Physiology is dedicated to innovative approaches to the study of cell and molecular physiology. Contributions that use cellular and molecular approaches to shed light on mechanisms of physiological control at higher levels of organization also appear regularly. Manuscripts dealing with the structure and function of cell membranes, contractile systems, cellular organelles, and membrane channels, transporters, and pumps are encouraged. Studies dealing with integrated regulation of cellular function, including mechanisms of signal transduction, development, gene expression, cell-to-cell interactions, and the cell physiology of pathophysiological states, are also eagerly sought. Interdisciplinary studies that apply the approaches of biochemistry, biophysics, molecular biology, morphology, and immunology to the determination of new principles in cell physiology are especially welcome.