Hanaa Skhoun, Meriem El Fessikh, Mohammed Khattab, Basma Mchich, Aomar Agadr, Rachid Abilkassem, Nadia Dakka, Delphine Flatters, Anne-Claude Camproux, Zohra Ouzzif, Jamila El Baghdadi
{"title":"A Novel NRAS Variant Near the Splice Junction in Moroccan Childhood Acute Lymphoblastic Leukemia: A Molecular Dynamics Study.","authors":"Hanaa Skhoun, Meriem El Fessikh, Mohammed Khattab, Basma Mchich, Aomar Agadr, Rachid Abilkassem, Nadia Dakka, Delphine Flatters, Anne-Claude Camproux, Zohra Ouzzif, Jamila El Baghdadi","doi":"10.1007/s10528-024-10968-2","DOIUrl":null,"url":null,"abstract":"<p><p>The RAS genes are importantly implicated in oncogenesis and are frequently mutated in childhood acute lymphoblastic leukemia. This study is the first to our knowledge, to determine the mutational status of NRAS and KRAS genes in Moroccan pediatric acute lymphoblastic leukemia (ALL). Polymerase chain reaction and Sanger sequencing were performed for 45 ALL samples to explore the coding exons. The functional effect of the mutation was evaluated using in silico prediction tools and molecular modeling. We identified a novel variant c.290 G > C p.Arg97Thr within NRAS gene in a patient with T-ALL, which is a rare missense point mutation affecting the last base of exon 3. Analyses revealed that p.Arg97Thr impairs the adjacent splice site efficiency. Moreover, it leads to structural modifications at local and global levels of the protein through the loss of hydrogen bonds. Additionally, the molecular dynamics (MD) simulation showed that it slightly increases the stability of NRAS protein by locally decreasing the flexibility of the mutated region. No variant was detected within KRAS gene. R97 at NRAS gene is an overlapping splice site residue. Our findings suggest that the NRAS p.Arg97Thr variant may disrupt the splicing machinery and functions of the protein, thus playing a vital role in leukemogenesis. In addition, the highly druggable pocket may possibly be studied for its therapeutic implications.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10528-024-10968-2","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The RAS genes are importantly implicated in oncogenesis and are frequently mutated in childhood acute lymphoblastic leukemia. This study is the first to our knowledge, to determine the mutational status of NRAS and KRAS genes in Moroccan pediatric acute lymphoblastic leukemia (ALL). Polymerase chain reaction and Sanger sequencing were performed for 45 ALL samples to explore the coding exons. The functional effect of the mutation was evaluated using in silico prediction tools and molecular modeling. We identified a novel variant c.290 G > C p.Arg97Thr within NRAS gene in a patient with T-ALL, which is a rare missense point mutation affecting the last base of exon 3. Analyses revealed that p.Arg97Thr impairs the adjacent splice site efficiency. Moreover, it leads to structural modifications at local and global levels of the protein through the loss of hydrogen bonds. Additionally, the molecular dynamics (MD) simulation showed that it slightly increases the stability of NRAS protein by locally decreasing the flexibility of the mutated region. No variant was detected within KRAS gene. R97 at NRAS gene is an overlapping splice site residue. Our findings suggest that the NRAS p.Arg97Thr variant may disrupt the splicing machinery and functions of the protein, thus playing a vital role in leukemogenesis. In addition, the highly druggable pocket may possibly be studied for its therapeutic implications.
期刊介绍:
Biochemical Genetics welcomes original manuscripts that address and test clear scientific hypotheses, are directed to a broad scientific audience, and clearly contribute to the advancement of the field through the use of sound sampling or experimental design, reliable analytical methodologies and robust statistical analyses.
Although studies focusing on particular regions and target organisms are welcome, it is not the journal’s goal to publish essentially descriptive studies that provide results with narrow applicability, or are based on very small samples or pseudoreplication.
Rather, Biochemical Genetics welcomes review articles that go beyond summarizing previous publications and create added value through the systematic analysis and critique of the current state of knowledge or by conducting meta-analyses.
Methodological articles are also within the scope of Biological Genetics, particularly when new laboratory techniques or computational approaches are fully described and thoroughly compared with the existing benchmark methods.
Biochemical Genetics welcomes articles on the following topics: Genomics; Proteomics; Population genetics; Phylogenetics; Metagenomics; Microbial genetics; Genetics and evolution of wild and cultivated plants; Animal genetics and evolution; Human genetics and evolution; Genetic disorders; Genetic markers of diseases; Gene technology and therapy; Experimental and analytical methods; Statistical and computational methods.