Fenton-Inactive Cd Enables Highly Selective O2-Derived Domino Reaction.

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yitong Wang, Huilin Wang, Yulu Yang, Zhaomin Hao, Ruiping Deng, Qingsong Dong, Qingchao Liu, Hongpeng You, Shuyan Song
{"title":"Fenton-Inactive Cd Enables Highly Selective O<sub>2</sub>-Derived Domino Reaction.","authors":"Yitong Wang, Huilin Wang, Yulu Yang, Zhaomin Hao, Ruiping Deng, Qingsong Dong, Qingchao Liu, Hongpeng You, Shuyan Song","doi":"10.1002/advs.202407051","DOIUrl":null,"url":null,"abstract":"<p><p>Advancing and deploying Fenton-inactive Cd that combines excellent catalytic activity, selectivity, and stability remains a serious challenge, predominantly owing to the difficulty in regulating the intrinsic electronic states and local geometric structures of such fully occupied d<sup>10</sup>s<sup>2</sup> configuration. In this work, a combination of experiments and theoretical calculations reveals that the incorporation of boron (B) enables the tuning of the average oxidation state of Cd<sup>0</sup> to Cd<sup>δ+</sup>, facilitating electron localization and implementing a different electrocatalytic preference compared to conventional d<sup>10</sup>-electron configurations. The resulting Cd(B) catalyst demonstrates high selectivity (>90% on average) in the O<sub>2</sub>-to-H<sub>2</sub>O<sub>2</sub> conversion, negligible activity loss over 100 h, and a superior H<sub>2</sub>O<sub>2</sub> production rate (15.5 mol∙g<sub>cat</sub> <sup>-1</sup> h<sup>-1</sup> at -100 mA). More unexpectedly, the in situ generated H<sub>2</sub>O<sub>2</sub> exhibits a unique advantage over commercial products, selectively oxidizing cinnamaldehyde to benzaldehyde by modulating the practical current.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":null,"pages":null},"PeriodicalIF":14.3000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202407051","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Advancing and deploying Fenton-inactive Cd that combines excellent catalytic activity, selectivity, and stability remains a serious challenge, predominantly owing to the difficulty in regulating the intrinsic electronic states and local geometric structures of such fully occupied d10s2 configuration. In this work, a combination of experiments and theoretical calculations reveals that the incorporation of boron (B) enables the tuning of the average oxidation state of Cd0 to Cdδ+, facilitating electron localization and implementing a different electrocatalytic preference compared to conventional d10-electron configurations. The resulting Cd(B) catalyst demonstrates high selectivity (>90% on average) in the O2-to-H2O2 conversion, negligible activity loss over 100 h, and a superior H2O2 production rate (15.5 mol∙gcat -1 h-1 at -100 mA). More unexpectedly, the in situ generated H2O2 exhibits a unique advantage over commercial products, selectively oxidizing cinnamaldehyde to benzaldehyde by modulating the practical current.

Fenton-Inactive Cd 可实现高选择性 O2 衍生多米诺反应。
推进和部署兼具出色催化活性、选择性和稳定性的芬顿活性镉仍然是一项严峻的挑战,这主要是由于难以调节这种完全占据的 d10s2 构型的固有电子状态和局部几何结构。在这项工作中,结合实验和理论计算发现,硼(B)的加入可以将 Cd0 的平均氧化态调整为 Cdδ+,从而促进电子定位,并实现与传统 d10 电子构型不同的电催化偏好。由此产生的 Cd(B) 催化剂在 O2 到 H2O2 的转化过程中具有很高的选择性(平均大于 90%),100 小时内的活性损失可以忽略不计,而且 H2O2 生成率极高(-100 mA 时为 15.5 mol∙gcat -1 h-1)。更令人意想不到的是,原位生成的 H2O2 与商业产品相比具有独特的优势,通过调节实用电流可选择性地将肉桂醛氧化为苯甲醛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信