Xuan Sun, Han Ren, Yue-Chan Cui, Qian Liu, Jie Li, Jie Gao
{"title":"Surface-induced self-assembly of peptides turns superhydrophobic surface of electrospun fibrous into superhydrophilic one.","authors":"Xuan Sun, Han Ren, Yue-Chan Cui, Qian Liu, Jie Li, Jie Gao","doi":"10.1016/j.colsurfb.2024.114350","DOIUrl":null,"url":null,"abstract":"<p><p>Current surface modification strategies for electrospun materials always require covalent conjugation technology, which is relatively inefficient and might damage the bioactivity and structure of peptides and proteins. Here we introduce the use of surface-induced self-assembly technology to modify electrospun materials, which is a simple but efficient noncovalent-based process. Results show that the peptide NapFFGRGD forms burr-like structures on the surface of PCL fibers, reducing the water contact angle of the fibers. Adjusting the peptide sequence and salt concentration affects the self-assembly and surface properties of modified PCL fibers. Additionally, we demonstrate the potential application of this surface modification technique for enhancing cellular responses in tissue engineering applications. The research provides valuable insights into the surface modification of PCL fibers and offers a new method for improving the biological compatibility of materials in tissue engineering.</p>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"245 ","pages":"114350"},"PeriodicalIF":5.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces B: Biointerfaces","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1016/j.colsurfb.2024.114350","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Current surface modification strategies for electrospun materials always require covalent conjugation technology, which is relatively inefficient and might damage the bioactivity and structure of peptides and proteins. Here we introduce the use of surface-induced self-assembly technology to modify electrospun materials, which is a simple but efficient noncovalent-based process. Results show that the peptide NapFFGRGD forms burr-like structures on the surface of PCL fibers, reducing the water contact angle of the fibers. Adjusting the peptide sequence and salt concentration affects the self-assembly and surface properties of modified PCL fibers. Additionally, we demonstrate the potential application of this surface modification technique for enhancing cellular responses in tissue engineering applications. The research provides valuable insights into the surface modification of PCL fibers and offers a new method for improving the biological compatibility of materials in tissue engineering.
期刊介绍:
Colloids and Surfaces B: Biointerfaces is an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin, having particular relevance to the medical, pharmaceutical, biotechnological, food and cosmetic fields.
Submissions that: (1) deal solely with biological phenomena and do not describe the physico-chemical or colloid-chemical background and/or mechanism of the phenomena, and (2) deal solely with colloid/interfacial phenomena and do not have appropriate biological content or relevance, are outside the scope of the journal and will not be considered for publication.
The journal publishes regular research papers, reviews, short communications and invited perspective articles, called BioInterface Perspectives. The BioInterface Perspective provide researchers the opportunity to review their own work, as well as provide insight into the work of others that inspired and influenced the author. Regular articles should have a maximum total length of 6,000 words. In addition, a (combined) maximum of 8 normal-sized figures and/or tables is allowed (so for instance 3 tables and 5 figures). For multiple-panel figures each set of two panels equates to one figure. Short communications should not exceed half of the above. It is required to give on the article cover page a short statistical summary of the article listing the total number of words and tables/figures.