Zhongkai Liu, Jin Huang, Mengqi Liu, Liying Cui, Xiaoyu Li, Qi Meng, Xiaoshuai Wang, Shengkai Liu, Jinsong Peng, Zhiguo Liu
{"title":"Ginger vesicle as a nanocarrier to deliver 10-hydroxycamptothecin.","authors":"Zhongkai Liu, Jin Huang, Mengqi Liu, Liying Cui, Xiaoyu Li, Qi Meng, Xiaoshuai Wang, Shengkai Liu, Jinsong Peng, Zhiguo Liu","doi":"10.1016/j.colsurfb.2024.114357","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we developed the ginger vesicles as nanocarrier for the targeted delivery of 10-hydroxy-camptothecin (HCPT), aiming to improve its therapeutic efficacy while minimizing the systemic toxicity. Ginger vesicles exhibit a wide spectrum of biological activities and excellent biocompatibility, rendering them as the promising nanocarriers candidates for anticancer drug delivery. The ginger vesicles with an average diameter of 86.83 nm were successfully prepared by utilizing a gradient centrifugation method. The loading conditions for HCPT into the ginger vesicles were optimized through the addition of an appropriate amount of Ca<sup>2+</sup>. The loading efficiency, size distribution, stability, and cytotoxicity profile of the ginger vesicles were comprehensively characterized using UV spectroscopy, transmission electron microscopy (TEM), dynamic light scattering (DLS), and cytotoxicity experiments. Furthermore, in vitro cytotoxicity studies confirmed that ginger vesicles loaded with HCPT exhibited high inhibitory activity against tumor cells as evidenced by fluorescence imaging and flow cytometry analysis. Most importantly, in vivo antitumor assay demonstrated that the ginger vesicles loaded with HCPT displayed remarkable inhibitory effects on tumor growth. In summary, our results demonstrated the potential application of the ginger vesicles as ideal nanocarriers for delivering HCPT.</p>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"245 ","pages":"114357"},"PeriodicalIF":5.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces B: Biointerfaces","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1016/j.colsurfb.2024.114357","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we developed the ginger vesicles as nanocarrier for the targeted delivery of 10-hydroxy-camptothecin (HCPT), aiming to improve its therapeutic efficacy while minimizing the systemic toxicity. Ginger vesicles exhibit a wide spectrum of biological activities and excellent biocompatibility, rendering them as the promising nanocarriers candidates for anticancer drug delivery. The ginger vesicles with an average diameter of 86.83 nm were successfully prepared by utilizing a gradient centrifugation method. The loading conditions for HCPT into the ginger vesicles were optimized through the addition of an appropriate amount of Ca2+. The loading efficiency, size distribution, stability, and cytotoxicity profile of the ginger vesicles were comprehensively characterized using UV spectroscopy, transmission electron microscopy (TEM), dynamic light scattering (DLS), and cytotoxicity experiments. Furthermore, in vitro cytotoxicity studies confirmed that ginger vesicles loaded with HCPT exhibited high inhibitory activity against tumor cells as evidenced by fluorescence imaging and flow cytometry analysis. Most importantly, in vivo antitumor assay demonstrated that the ginger vesicles loaded with HCPT displayed remarkable inhibitory effects on tumor growth. In summary, our results demonstrated the potential application of the ginger vesicles as ideal nanocarriers for delivering HCPT.
期刊介绍:
Colloids and Surfaces B: Biointerfaces is an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin, having particular relevance to the medical, pharmaceutical, biotechnological, food and cosmetic fields.
Submissions that: (1) deal solely with biological phenomena and do not describe the physico-chemical or colloid-chemical background and/or mechanism of the phenomena, and (2) deal solely with colloid/interfacial phenomena and do not have appropriate biological content or relevance, are outside the scope of the journal and will not be considered for publication.
The journal publishes regular research papers, reviews, short communications and invited perspective articles, called BioInterface Perspectives. The BioInterface Perspective provide researchers the opportunity to review their own work, as well as provide insight into the work of others that inspired and influenced the author. Regular articles should have a maximum total length of 6,000 words. In addition, a (combined) maximum of 8 normal-sized figures and/or tables is allowed (so for instance 3 tables and 5 figures). For multiple-panel figures each set of two panels equates to one figure. Short communications should not exceed half of the above. It is required to give on the article cover page a short statistical summary of the article listing the total number of words and tables/figures.