A porous network of boron-doped IrO2 nanoneedles with enhanced mass activity for acidic oxygen evolution reactions.

IF 12.2 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Fei Hu, Peiyu Huang, Xu Feng, Changjian Zhou, Xinjuan Zeng, Congcong Liu, Guangjin Wang, Xiaowei Yang, Huawen Hu
{"title":"A porous network of boron-doped IrO<sub>2</sub> nanoneedles with enhanced mass activity for acidic oxygen evolution reactions.","authors":"Fei Hu, Peiyu Huang, Xu Feng, Changjian Zhou, Xinjuan Zeng, Congcong Liu, Guangjin Wang, Xiaowei Yang, Huawen Hu","doi":"10.1039/d4mh01358a","DOIUrl":null,"url":null,"abstract":"<p><p>While proton exchange membrane water electrolyzers (PEMWEs) are essential for realizing practical hydrogen production, the trade-off among activity, stability, and cost of state-of-the-art iridium (Ir)-based oxygen evolution reaction (OER) electrocatalysts for PEMWE implementation is still prohibitively challenging. Ir minimization coupled with mass activity improvement of Ir-based catalysts is a promising strategy to address this challenge. Here, we present a discovery demonstrating that boron doping facilitates the one-dimensional (1D) anisotropic growth of IrO<sub>2</sub> crystals, as supported by both experimental and theoretical evidence. The synthesized porous network of ultralong boron-doped iridium oxide (B-IrO<sub>2</sub>) nanoneedles exhibits improved electronic conductivity and reduced charge transfer resistance, thereby increasing the number of active sites. As a result, B-IrO<sub>2</sub> displays an ultrahigh OER mass activity of 3656.3 A g<sub>Ir</sub><sup>-1</sup> with an Ir loading of 0.08 mg<sub>Ir</sub> cm<sup>-2</sup>, which is 4.02 and 6.18 times higher than those of the un-doped IrO<sub>2</sub> nanoneedle network (L-IrO<sub>2</sub>) and Adams IrO<sub>2</sub> nanoparticles (A-IrO<sub>2</sub>), respectively. Density functional theory (DFT) calculations reveal that the B doping moderately increases the d-band center energy level and significantly lowers the free energy barrier for the conversion of *O to *OOH, thereby improving the intrinsic activity. On the other hand, the stability of B-IrO<sub>2</sub> can be synchronously promoted, primarily attributed to the B-induced strengthening of the Ir bonds, which help resist electrochemical dissolution. More importantly, when the B-IrO<sub>2</sub> catalysts are applied to the membrane electrode assembly for PEM water electrolysis (PEMWE), they generate a remarkable current density of up to 2.8 A cm<sup>-2</sup> and maintain operation for at least 160 h at a current density of 1.0 A cm<sup>-2</sup>. This work provides new insights into promoting intrinsic activity and stability while minimizing the usage of noble-metal-based OER electrocatalysts for critical energy conversion and storage.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4mh01358a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

While proton exchange membrane water electrolyzers (PEMWEs) are essential for realizing practical hydrogen production, the trade-off among activity, stability, and cost of state-of-the-art iridium (Ir)-based oxygen evolution reaction (OER) electrocatalysts for PEMWE implementation is still prohibitively challenging. Ir minimization coupled with mass activity improvement of Ir-based catalysts is a promising strategy to address this challenge. Here, we present a discovery demonstrating that boron doping facilitates the one-dimensional (1D) anisotropic growth of IrO2 crystals, as supported by both experimental and theoretical evidence. The synthesized porous network of ultralong boron-doped iridium oxide (B-IrO2) nanoneedles exhibits improved electronic conductivity and reduced charge transfer resistance, thereby increasing the number of active sites. As a result, B-IrO2 displays an ultrahigh OER mass activity of 3656.3 A gIr-1 with an Ir loading of 0.08 mgIr cm-2, which is 4.02 and 6.18 times higher than those of the un-doped IrO2 nanoneedle network (L-IrO2) and Adams IrO2 nanoparticles (A-IrO2), respectively. Density functional theory (DFT) calculations reveal that the B doping moderately increases the d-band center energy level and significantly lowers the free energy barrier for the conversion of *O to *OOH, thereby improving the intrinsic activity. On the other hand, the stability of B-IrO2 can be synchronously promoted, primarily attributed to the B-induced strengthening of the Ir bonds, which help resist electrochemical dissolution. More importantly, when the B-IrO2 catalysts are applied to the membrane electrode assembly for PEM water electrolysis (PEMWE), they generate a remarkable current density of up to 2.8 A cm-2 and maintain operation for at least 160 h at a current density of 1.0 A cm-2. This work provides new insights into promoting intrinsic activity and stability while minimizing the usage of noble-metal-based OER electrocatalysts for critical energy conversion and storage.

掺硼 IrO2 纳米针的多孔网络在酸性氧进化反应中具有更强的质量活性。
虽然质子交换膜水电解槽(PEMWE)对于实现实际制氢至关重要,但在实施 PEMWE 时,如何权衡最先进的基于铱(Ir)的氧进化反应(OER)电催化剂的活性、稳定性和成本,仍然是一个令人望而却步的挑战。将铱最小化,同时提高铱基催化剂的质量活性,是应对这一挑战的可行策略。在此,我们发现硼掺杂促进了 IrO2 晶体的一维(1D)各向异性生长,并得到了实验和理论证据的支持。合成的超长掺硼氧化铱(B-IrO2)纳米针状多孔网络具有更高的电子传导性和更低的电荷转移电阻,从而增加了活性位点的数量。因此,B-ArO2 在掺入 0.08 mgIr cm-2 的铱时显示出 3656.3 A gIr-1 的超高 OER 质量活性,分别是未掺杂 IrO2 纳米针状网络(L-ArO2)和亚当斯 IrO2 纳米颗粒(A-ArO2)的 4.02 倍和 6.18 倍。密度泛函理论(DFT)计算显示,B d掺杂适度提高了d带中心能级,显著降低了*O转化为*OOH的自由能垒,从而提高了本征活性。另一方面,B-IrO2 的稳定性也能同步提高,这主要归功于 B 诱导的 Ir 键的增强,有助于抵抗电化学溶解。更重要的是,当将 B-IrO2 催化剂应用于 PEM 水电解(PEMWE)的膜电极组件时,它们能产生高达 2.8 A cm-2 的显著电流密度,并能在 1.0 A cm-2 的电流密度下维持至少 160 小时的运行。这项工作为提高固有活性和稳定性,同时最大限度地减少贵金属基 OER 电催化剂在关键能源转换和储存中的使用提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信